Early eudicot reproductive structure: Fruit and flower morphology of Ranunculaecarpus Samyl. from the Early Cretaceous of eastern Siberia
 
More details
Hide details
1
Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611-7800, USA
 
2
Komarov Botanical Institute RAS, Prof. Popov str. 2, St. Petersburg 197376, Russia
 
3
Department of Higher Plants, Faculty of Biology, Moscow State University, 12, 1, Leninskie Gory, Moscow 119234, Russia
 
4
Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
 
 
Online publication date: 2018-12-24
 
 
Publication date: 2018-12-24
 
 
Acta Palaeobotanica 2018; 58(2): 121-133
 
KEYWORDS
ABSTRACT
Floral and fruit morphology of the early eudicot Ranunculaecarpus quinquecarpellatus Samyl. is described based on details from sectioning and microscopy of the permineralized type material from the Albian Buor-Kemyus Formation of the Zyryanka coal basin. Serial sections confirmed most of the originally described characters but revealed additional information, including hypogynous perianth and several stamens with in situ pollen. Each fruit consists of five free follicles inserted on a short receptacle. Follicles are elongate, with a dorsal keel, ventral suture and an attenuate apex, and are thin-walled, with two rows of small seeds in marginal placentation. The seeds are anatropous, ovoid, 1.3–1.7 in length, with an exotesta of cells that are rounded-hexagonal in surface view. The hypogynous perianth is composed of several free tepals. The stamens are short, with tetrasporangiate, dithecal anthers dehiscing by longitudinal slits. Pollen in situ is 18–20 mm long, 13–15 mm in equatorial diameter, with uncertain aperture configuration and a loose reticulum supported by narrow, widely spaced columellae. The combination of macromorphological characters support possible affinity to extant Ranunculaceae. However, Ranunculaecarpus is distinguished from modern members of the family by the persistence of the perianth in fruit, a smaller number of stamens (ca 10) than is typical, and pollen that is unlike that of any extant genera. Given that there are also similarities with Saxifragales, the systematic affinities of Ranunculaecarpus remain uncertain.
 
REFERENCES (52)
1.
CHENG X.Y., LIU M., SHI C.Q., ZHANG X.X. & RU J. 2015. The phylogenetic significance of fruit structures in Ranunculaceae of China. Pakistan J. Bot., 47: 453–466.
 
2.
CHERNYKH A.A. 1998. Sravnitelnaya karpologiya i sistematika poriadka Ranunculales Lindley [Comparative carpology and systematic of the order Ranunculales Lindley]. PhD Thesis, Moscow State University, Moscow. [In Russian].
 
3.
CORNER E.J.H. 1976. The seeds of dicotyledons. Cambridge University Press, Cambridge. London.
 
4.
DAMERVAL C. & NADOT S. 2007. Evolution of perianth and stamen characteristics with respect to floral symmetry in Ranunculales. Ann. Bot., 100: 631–640.
 
5.
DANILOVA M.F. 1996. Crassulaceae: 25–32. In: Takhtajan A. (ed.), Anatomia Seminum Comparativa. T. 5, Dicotyledones: Rosidae I. Mir i Semia, St. Petersburg. [In Russian].
 
6.
DEZHI F & ROBINSON O.R. 2001. Asteropyrum, Coptis: 281–282, 314–316. In: Flora of China, Vol. 6. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis.
 
7.
DRINNAN A.N., CRANE P.R. & HOOT S.B. 1994. Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). Pl. Syst. Evol. (Suppl.), 8: 93–122.
 
8.
ENDRESS P.K. 1994. Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge, London.
 
9.
ENDRESS P.K. 2006. Angiosperm floral evolution: morphological developmental framework. Adv. Bot. Res., 44: 1–61.
 
10.
ENDRESS P.K. 2010. Flower structure and trends of evolution in eudicots and their major subclades. Ann. Missouri Bot. Gard., 97: 541–583.
 
11.
ERDTMAN G. 1986. Pollen morphology and plant taxonomy – Angiosperms. E.J. Brill, Leiden.
 
12.
FEDOTOVA T.A. 1988. Paeoniaceae: 195–207. In Takhtajan A. (ed.), Anatomia Seminum Comparativa. T. 2, Dicotyledones: Magnoliidae, Ranunculidae. Nauka, Leningrad. [In Russian].
 
13.
FRIIS E.M. & CREPET W.L. 1987. Time of appearance of floral features: 145–179. In: Friis E.M., Chaloner W.G. & Crane P.R. (eds), The origin of angiosperms and their biological consequences. Cambridge Univ. Press. Cambridge, London.
 
14.
FRIIS E.M., CRANE P.R. & PEDERSEN K.R. 2011. Early flowers and angiosperm evolution. Cambridge University Press, Cambridge.
 
15.
FRIIS E.M., PEDERSEN K.R. & CRANE P.R. 2017. Kenilanthus, a new eudicot flower with tricolpate pollen from the Early Cretaceous (early-middle Albian) of eastern North America. Grana, 56: 161–173.
 
16.
FRIIS E.M., MENDES M.M. & PEDERSEN K.R. 2018. Paisia, an Early Cretaceous eudicot angiosperm flower with pantoporate pollen from Portugal. Grana, 57: 1–15.
 
17.
FRIIS E.M., PEDERSEN K.R., & CRANE P.R. 1994. Angiosperm floral structures from the Early Cretaceous of Portugal. Plant Syst. Evol. [Supplement], 8: 31–49.
 
18.
GOLOVNEVA L.B. 2018. Diversity of palmately lobed leaves in the early-middle Albian of eastern Russia. Cretaceous Research, 84: 18–31.
 
19.
GOLOVNEVA L.B. & ALEKSEEV P.I. 2010. The genus Trochodendroides Berry in the Cretaceous floras of Siberia. Paleobotanika, 1: 120–166. [In Russian].
 
20.
HERMAN A.B. 1999. Composition and age of the Grebenka Flora from the Anadyr River area (the Middle Cretaceous, North-eastern Russia). Stratigr. Geol. Correl., 7: 265–278.
 
21.
JABBOUR F., RONSE De CRAENE L.P., NADOT S. & DAMERVAL C. 2009. Establishment of zygomorphy on an ontogenic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae). Ann. Bot., 104: 809–822.
 
22.
KRASSILOV V.A. & VOLYNETS Y. 2008. Weedy Albian angiosperms. Acta Palaeobot., 48: 151–171.
 
23.
KRASSILOV V.A., SHILIN P.V. & VACHRAMEEV V.A. 1983. Cretaceous flowers from Kazakhstan. Rev. Palaeobot. Palynol., 40: 91–113.
 
24.
KRYSHTOFOVICH A.N. 1938. Upper Cretaceous plants from the Kolyma River. Contributions to the knowledge of the Kolyma-Indigirka land. Ser. 2, 15: 1–16. [in Russian].
 
25.
LENG Q. & FRIIS E.M. 2003. Sinocarpus decussatus gen. et sp. nov, a new angiosperm with syncarpous fruits from the Yixian Formation of Northeast China. Plant Syst. Evol., 241(1–2): 77–88.
 
26.
LENG Q. & FRIIS E.M. 2006. Angiosperm leaves associated with Sinocarpus Leng et Friis infructescences from the Yixian Formation (mid-Early Cretaceous) of NE China. Plant Syst. Evol., 262: 173–187.
 
27.
MENDES M.M., GRIMM G.W., PAIS J. & FRIIS E.M. 2014. Fossil Kajanthus lusitanicus gen. et sp. nov. from Portugal: floral evidence for Early Cretaceous Lardizabalaceae (Ranunculales, basal eudicot). Grana, 53(4): 283–301.
 
28.
PIGG K.B. & DEVORE M.L. 2005. Paleoactaea gen. nov. (Ranunculaceae) fruits from the Paleocene of North Dakota and the London clay. Am. J. Bot., 92(10): 1650–1659.
 
29.
POPOV G.G. 1962. Zyryanka coal basin. In: Geology of coal and oil shale of the USSR. Vol. 10. Gosgeoltekhisdat, Moskow.
 
30.
PRYNADA V.D. 1938. Contribution to the knowledge of the Mesozoic flora from the Kolyma basin. Contributions to the knowledge of the Kolyma-Indigirka land. Ser. 2, 13: 1–74. [in Russian].
 
31.
PUEBLA G.G. 2009. A new angiosperm leaf morphotype from the Early Cretaceous (Late Aptian) of San Luis basin, Argentina. Ameghiniana, 46: 557–566.
 
32.
RODRIQUEZ de la ROSA R.A., CEVALLOS-FERRIZ S.R.S. & SILVA-PINEDA A. 1998. Paleobiological implication of Campanian corpolites. Palaeogeogr., Palaeoclimatol., Palaeoecol., 142: 231–254.
 
33.
RONSE DE CRAENE L.P. 2010. Floral Diagrams. An aid to understanding flower morphology and evolution. Cambridge University Press, Cambridge.
 
34.
RONSE DE CRAENE L.P. & SMETS E.F. 1995. Evolution of the androecium in the Ranunculiflorae. Plant Syst. Evol. [Suppl.], 9: 63–70.
 
35.
SAMYLINA V.A. 1959. New occurences of angiosperms from the Lower Cretaceous of the Kolyma basin. Bot. Zh., 44(4): 483–491. [in Russian].
 
36.
SAMYLINA V.A. 1960. Angiosperms from the lower Cretaceous deposits of Kolyma. Bot. Zh., 45(3): 335–352. [in Russian].
 
37.
SAMYLINA V.A. 1964. Mesozoic flora of the left-bank area of the Kolyma River (Zyryanka coal basin). I. Equisetales, Filicales, Cycadales, Bennettitales. Acta Komarov Botan. Instit., Academy of Sciences of the USSR. Ser. 8, Paleobotanica. Fasc. 5: 39–80. [in Russian].
 
38.
SAMYLINA V.A. 1967. Mesozoic flora of the left-bank area of the Kolyma River (Zyryanka coal basin). II. Ginkgoales, Coniferales. General chapters. Acta Komarov Bot. Inst., Academy of Sciences of the USSR. Ser. 8, Paleobotanica. Fasc. 6: 133–176. [in Russian].
 
39.
SAMYLINA V.A. 1974. Early Cretaceous floras of northeastern Russia (To the problem of the evolving Cainophyte flora). XXVII Komarov Lectures. Nauka, Leningrad. [in Russian].
 
40.
SAMYLINA V.A. 1976. The Cretaceous flora of Omsukchan (Magadan oblast’). Nauka, Leningrad. [in Russian].
 
41.
SAUQUET H.,VON BALTHAZAR M., MAGALLÓN S., DOYLE J.A., ENDRESS P.K., BAILES E.J., BARROSO E., MORAIS DE, BULL-HEREÑU K., CARRIVE L., CHARTIER M., CHOMICKI G., COIRO M., CORNETTE R., EL OTTRA J.H.L., EPICOCO C., FOSTER C.S.P., JABBOUR F., HAEVERMANS A., HAEVERMANS T., HERNÁNDEZ R., LITTLE S.A., LÖFSTRAND S., LUNA J.A., MASSONI J., NADOT S., PAMPERL S., PRIEU C., REYES E., DOS SANTOS P., SCHOONDERWOERD K.M., SONTAG S., SOULEBEAU A., STAEDLER Y., TSCHAN G.F., WING-SZE LEUNG A. & SCHÖNENBERGER J. 2017. The ancestral flower of angiosperms and its early diversification. Nature Communications, 8: 16047.
 
42.
SOLTIS D.E., SENTERS A., ZANIS M., KIM S., THOMPSON J.D., SOLTIS P.S., RONSE DE CRAENE L.P., ENDRESS P.K. & FARRIS J.S. 2003. Gunnerales are sister to other core eudicots: Implications for the evolution of pentamery. Amer. J. Bot., 90: 461–470.
 
43.
SOLTIS D., SOLTIS P., ENDRESS P., CHASE M., MANCHESTER S., JUDD W., MAJURE L. & MAVRODIEV E. 2018. Phylogeny and evolution of the angiosperms, revised and updated edition. University of Chicago Press, Chicago.
 
44.
SUN G., DILCHER D.L., WANG H. & CHEN Z. 2011. A eudicot from the Early Cretaceous of China. Nature, 471: 625–628.
 
45.
TAKHTAJAN A. 1969. Flowering plants origin and dispersal. Smithsonian Institution Press. Washington.
 
46.
TAKHTAJAN A. 2009. Flowering plants, 2nd ed. Springer, New York, New York.
 
47.
TAMURA M. 1993. Ranunculaceae: 563–583. In: Kubitzki K., Rowher J.G. & Bittrich V. (eds), The families and genera of vascular plants. Vol. II. Magnoliid, Hammelid and Caryophyllid families. Springer, Berlin.
 
48.
THIEDE J. & EGGLI U. 2007. Crassulaceae: 83–118. In: Kubitzki K (ed.), The families and genera of vascular plants, vol. 9. Springer, Berlin/Heidelberg/New York.
 
49.
TÖPEL M., ANTONELLI A., YESSON C. & ERIKSEN B. 2012. Past climate change and plant evolution in western North America: A case study in Rosaceae. PLoS ONE 7(12): e50358.
 
50.
TRIFONOVA V.I. 1988. Ranunculaceae: 176–181. In: Takhtajan A. (ed.), Anatomia Seminum Comparativa. T. 2, Dicotyledones: Magnoliidae, Ranunculidae. Nauka, Leningrad. [in Russian].
 
51.
TUCKER S.C. & HODGES S.A. 2005. Floral ontogeny of Aquilegia, Semiaquilegia, and Enemion (Ranunculaceae). Int. J. Plant Sci., 166: 557–574.
 
52.
VON BALTHAZAR M., PEDERSEN K.R. & FRIIS E.M. 2005. Teixeiraea lusitanica, a new fossil flower from the Early Cretaceous of Portugal with affinities to Ranunculales. Plant Syst. Evol., 255: 55–75.
 
 
CITATIONS (2):
1.
A eudicot leaf from the Lower Cretaceous (Aptian, Araripe Basin) Crato Konservat‐Lagerstätte
Edlley Pessoa, Alexandre Ribeiro, Nathan Jud
American Journal of Botany
 
2.
The Cretaceous diversification of angiosperms: perspectives from mesofossils
Else Marie Friis, Peter R. Crane, Kaj Raunsgaard Pedersen
Geological Society, London, Special Publications
 
eISSN:2082-0259
ISSN:0001-6594
Journals System - logo
Scroll to top