An approach to compare the environmental conditions of Acer in the Miocene and in the modern flora of Turkey, based on wood anatomy
 
More details
Hide details
1
İstanbul University-Cerrahpaşa, Forestry Faculty, Forest Botany Department, İstanbul, Turkey
 
2
Çapa Science College, Çapa, İstanbul, Turkey
 
 
Online publication date: 2018-12-24
 
 
Publication date: 2018-12-24
 
 
Acta Palaeobotanica 2018; 58(2): 209-217
 
KEYWORDS
ABSTRACT
In this study, xeromorphy ratios were calculated for Acer L. (maple) fossil woods in order to infer the precipitation conditions in the Miocene at the sites of the fossils, based on a comparison with the xeromorphy ratios of selected extant Acer species. The four studied petrified wood samples came from three localities of the Galatean Volcanic Province in Turkey: Kozyaka village (Bolu Province, Seben District), İnözü Valley (Ankara Province, Beypazarı District), and Kıraluç precinct between Nuhhoca and Dağşeyhler villages (Ankara Province, Beypazarı District). The calculated xeromorphy ratios ranged from 3 to 18 for the present-day wood and from 13 to 19 for the early Miocene wood. Values over 10 (11–18) represent xeric conditions; the lower values (3–7) indicate mesic conditions in modern Acer woods. The xeromorphy ratios of the Miocene wood indicate xeric conditions; we conclude that the sites of the fossil Acer woods were xeric, very similar to the modern Acer woodlands of central and southern Anatolia.
 
REFERENCES (57)
1.
AKKEMİK Ü. 2003. Tree-rings of Cedrus libani at the Northern Boundary of its natural distribution. IAWA Journal, 24(1): 63–73.
 
2.
AKKEMİK Ü., EFE A., KAYA Z. & DEMİR D. 2007. Wood anatomy of endemic Rhamnus species in the Mediterranean Region of Turkey. IAWA Journal, 28(3): 301–310.
 
3.
Akkemik Ü., Köse N. & Poole I. 2005. Sequoioiodae (Cupressaceae) woods from the upper Oligocene of European Turkey (Thrace). Phytologia Balcanica, 11(2): 119–131.
 
4.
Akkemik Ü., Türkoğlu N., Poole I., Çiçek İ., Köse N. & Gürgen G. 2009. Woods of a Miocene petrified forest near Ankara, Turkey. Turkish Journal of Agriculture and Forestry, 33: 89–97.
 
5.
Akkemik Ü. & Sakınç M. 2013. Sequoioxylon petrified woods from the Mid to Late Oligocene of Thrace (Turkey). IAWA Journal, 34(2): 177–182.
 
6.
Akkemik Ü., Arslan M., Poole I., Tosun S., Köse N., Karlıoğlu Kılıç N. & Aydın A. 2016. Silicified woods from two previously undescribed early Miocene forest sites near Seben, northwest Turkey. Rev. Palaeobot. Palynol., 235: 31–50.
 
7.
Akkemik Ü., Acarca N.N. & Hatipoğlu M. 2017. The first Glyptostroboxylon from the Miocene of Turkey. IAWA Journal, 38(4): 561–570.
 
8.
ALVES E.S. & ALFONSO V.A. 2002. Ecological trends in the wood anatomy of some Brazilian species, 2. Axial Parenchyma, Rays and Fibres. IAWA Journal, 23(4): 391–418.
 
9.
BAAS P. & WHEELER E. 2011. Wood anatomy and climate change. In: Hodkinson T.R., Jones M.B., Waldren S. & Parnell J.A. (Ed.) Climate Change, Ecology and Systematics. Cambridge.
 
10.
BARAJAS-MORALES J. 1985. Wood structural differences between trees of two tropical forests in Mexico. IAWA Bull., 6: 355–364.
 
11.
Bayam N.N.A., Akkemik Ü., Poole I. & Akarsu F. 2018. Further Contributions to the early Miocene forest vegetation of the Galatean Volcanic Province, Turkey. Palaeobotanica Electronica (In press).
 
12.
BOSIO F., SOFFIATTI P. & BOERGER M.R.T. 2010. Ecological wood anatomy of Miconia sellowiana (Melastomataceae) in three vegetation types of Parana State, Brazil. IAWA Journal, 31(2): 179–190.
 
13.
CAKIR M., MAKINECI E. & KUMBASLI M. 2010. Comparative study on soil properties in a picnic and undisturbed area of Belgra forest, Istanbul. Journal of Environmental Biology, 31: 125–128.
 
14.
CARLQUIST S. & HOEKMAN D.A. 1985. Ecological wood anatomy of the woody southern Californian flora. IAWA Journal, 6(4): 319–347.
 
15.
Carlquist S. 1988. Comparative wood anatomy. Springer Verlag, Berlin & Heidelberg.
 
16.
Cihan C. & Akkemik Ü. 2013. Ecological wood anatomy of some maquis species naturally grow in both Mediterranean and Black Sea regions of Turkey. Eurasian Journal of Forest Science, 1(1): 20–37.
 
17.
Dadzie P.K., Amoah M., Frimpong-Mensah K. & Shi S.Q. 2016. Comparison of density and selected microscopic characteristics of stem and branch wood of two commercial trees in Ghana.Wood Sci. Technol., 50(1): 91–104.
 
18.
Denk T., Güner T.H., Kvaček Z. & Bouchal M.J. 2017a. The early Miocene flora of Güvem (Central Anatolia, Turkey): a window into early Neogene vegetation and environments in the Eastern Mediterranean. Acta Palaeobot., 57(2): 237–338.
 
19.
Denk T., Velitzelos D., Güner T., Bouchal J.M., Grimsson F. & Grimm G.W. 2017b. Taxonomy and palaeoecology of two widespread western Eurasian Neogene sclerophyllous oak species: Quercus drymeja Unger and Q. mediterranea Unger. Rev. Palaeobot. Palynol., 241: 98–128.
 
20.
Denk T., Grimm G.W., Manos P.S., Deng M. & Hipp A. 2017c. An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns: 13–38. In: Gil-Peregrin E., Peguero-Pina J.J., Sancho-Knapik D. (eds) Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus. Tree Physiology 7, Springer Nature, Cham, Switzerland.
 
21.
ERŞEN BAK F. & MEREV N. 2016. Ecological wood anatomy of Fraxinus L. in Turkey (Oleaceae): Intraspecific and interspecific variation. Turkish Journal of Botany, 40: 356–372.
 
22.
FICHTER E & WORBES M. 2012. Wood anatomical variables in tropical trees and their relation to site condition sand individual tree morphology. IAWA Journal, 33(2): 119–140.
 
23.
GRYC V., VAVRCIK H., RYBNICEK M. & PREMYSLOVSKA E. 2008. The relation between the microscopic structure and the wood density of European beech (Fagus sylvatica L.). Journal of Forest Scince, 54: 170–175.
 
24.
Güner H.T., Bouchal J.M., Köse N., Göktaş F., Mayda S. & Denk T. 2017. Landscape heterogeneity in the Yatağan Basin (southwestern Turkey) during the middle Miocene inferred from plant macrofossils. Palaeontogr., B, 296(1–6): 113–171. DOI: 10.1127/palb/296/2017/113.
 
25.
IZQUIERDO G.G., BATTIPAGLIA G., GARTNER H. & CHERUBINI P. 2013. Xylem adjustment in Erica arborea to temperature and moisture availability in contrasting climates. IAWA Journal, 34(2): 109–126.
 
26.
Kayacık H., Aytuğ B., Yaltırık F., Şanlı İ., Efe A., Akkemik Ü. & İnan M. 1995. Sequoiadendron giganteum trees lived near Istanbul in late Tertiary. Review of Faculty of Forestry, Istanbul University, 45: 15–22.
 
27.
KHALIFAH N.S., KHAN P.R. & ABDULKADER N.T. 2006. Impact of water stress on the sapwood anatomy and functional morphology of Calligonum comosum. IAWA Journal, 27(3): 299–312.
 
28.
KOUTECKÝ V. & SAKALA J. 2015. New fossil woods from the Paleogene of Doupovske Horyand Ceske Stredohori Mts. (Bohemian Massif, Czech Republic). Acta Musei Nationalis Praga. Series B – Historia Naturalis, 71(3–4): 377–398.
 
29.
LINDORF H. 1994. Eco-Anatomical wood features of species from a very dry tropical forest. IAWA Journal, 15(4): 361–376.
 
30.
MASRAHI Y.S. 2014. Ecological significance of wood anatomy in two lianas from arid southwestern Saudi Arabia. Saudi J. Biol. Sci., 21(4): 334–341.
 
31.
MEREV N. & YAVUZ H. 2000. Ecological wood anatomy of Turkish Rhododendron L. (Ericaceae) intraspecifik variation. Turk. J. Botany, 24: 227–237.
 
32.
NOSHIRO S., IKEDA H. & JOSHI L. 2010. Distinct altitudunal trends in the wood structure of Rhododendron arboreum (Ericaceae) in Nepal. IAWA Journal, 31(4): 443–456.
 
33.
OLIVAR J., RATHGEBER C. & BRAVO F. 2015. Climate change, tree-ring width and wood density of pines in Mediterranean environments. IAWA Journal, 36(3): 257–269.
 
34.
Özel N. 1999. Phytosociological and phytoecological studies on the vegetation of Kazdağlari. The Ministry of Forestry. Publication no: 15. pp. 71 (In Turkish).
 
35.
Özgüven-Ertan K. 1971. Sur un bois fossile de Taxodiaceae dans la flore Neogene d’Istanbul (Turquie d’Europe): Sequoioxylon egemeni n.sp. Review of the Faculty of Science, University of Istanbul, 36(B): 89–114.
 
36.
PEREZ M.A.I. 1989. Caracterizacion ecoanatomica del leno de 40 especies del Bosque La Mucuy, Estado, Merida, Venezuela. Revista Forestal Venezolana, 33: 43–51.
 
37.
POURTAHMASI K., LOTFIOMRAN N., BRAUNING A. & PARSAPAJOUH D. 2011. Tree-ring width and vessel characteristics of oriental beech (Fagus orientalis) along on altitudinal gradient in the Caspian Forests, Northern Iran. IAWA Journal, 32(4): 461–473.
 
38.
PSARAS G.K. & SOFRONIOU I. 1999. Wood anatomy of Capparis spinosa from an ecological perspective. IAWA Journal, 20(4): 419–429.
 
39.
Pulat E. & Yaman B. 2017. Comparative wood anatomy of branch and trunk wood of some forest trees. Journal of Bartin Faculty of Forestry, 19(2): 237–249.
 
40.
SAKALA J. 2007. The potential of fossil angiosperm wood to reconstruct the palaeoclimate in the Tertiary of Central Europe (Czech Republic, Germany. Acta Palaeobot., 47(1): 127–133.
 
41.
ŞANLI İ. 1977. Wood anatomical researches on eastern beech (Fagus orientalis L.) growing in different regions of Turkey. Review of Faculty of Forestry, Istanbul University, 27(1): 207–282. [In Turkish].
 
42.
VILLIERS B.J.D., OSKOLSKI A.A., TILNEY P.M. & WYK B.E.V. 2012. Wood anatomy of Cussonia and Seemannaralia (Araliaceae) with systematic and ecological implications. IAWA Journal, 33(2): 163–186.
 
43.
Yaltırık F. 1968. Comparison of anatomical characteristics of woods in Turkish maples with the relations of the humidity of the sites. Review of Faculty of Forestry, Istanbul University, 18(2): 77–89.
 
44.
Yaltırık F. 1971. Studies on morphological and anatomical characteristics of native maple (Acer L.) species in Turkey. Istanbul University Faculty of Forestry Publication No: 179.
 
45.
YAMAN B. & SARIBAŞ M. 2004. Vessel size variability of poplar (Populus L.) species in relation to altitude in euxine region of Turkey. Journal of S.D.Ü Faculty of Forestry, 1(A): 111–123.
 
46.
YAMAN B. 2007. Comparative wood anatomy of Pinus sylvestris and its var. compacta in the West Black Sea Region of Turkey. IAWA Journal, 28(1): 75–81.
 
47.
Yaman B. 2008. Variation in quantitative vessel element features of Juglans regia wood in the western Black Sea region of Turkey. Agrociencia, 42: 357–365.
 
48.
Yaman B., Köse N. & Akkemik Ü. 2013. Changes in stem growth rates and root wood anatomy of oriental beech after a landslide event in Hanyeri, Bartın, Turkey. Turk. J. Agric. For., 37: 105–109.
 
49.
Yaman B. 2014. Anatomical differences between stem and branch wood of Ficus carica subsp. carica. Modern Phytomorphology, 6: 79–83.
 
50.
WHEELER E. & BAAS P. 1991. A survey of the fossil record from dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bulletin New Series, 12: 275–332.
 
51.
WHEELER E. & BAAS P. 1993. The potentials and limitations of dicotyledonous wood anatomy for climatic reconstructions. Paleobiology, 14: 486–497.
 
52.
WHEELER E.A. & LANDON J. 1992. Late Eocene (Chadronian) dicotyledonous woods from Nebraska: evolutionary and ecological significance. Rev. Palaeobot. Palynol., 74: 267–282.
 
53.
Wheeler E.A., Pearson R.G., LaPasha C.A., Zack T. & Hatley W. 1986. Computer-aided wood identification. Reference manual. Bull. N. Carolina Agric. Res. Serv, 474: 1–160.
 
54.
WIEMANN M.C., MANCHESTER S.R. & WHEELER E. 1999. Paleotemperature estimation from dicotyledonous wood anatomical characters. Palaios, 14: 459–474.
 
55.
WIEMANN M.C., WHEELER E. & MANCHESTER S.R. 1998. Dicotyledonous wood anatomical characters as predictors of climate. Paleogeogr., Paleoclimat., Paleoecol., 139: 83–100.
 
56.
ZIACO E., BIONDI F., ROSSI S. & DESLAURIERS A. 2014. Intra-annual wood anatomical features of high-elevation conifers in the Great Basin, USA. Dendrochronologia, 32: 303–312.
 
57.
Zimmerman M.H. & Potter D. 1982. Vessel-length distribution in branches, stem and roots of Acer rubum L., IAWA Bulletin n.s., 3(2): 103–109.
 
 
CITATIONS (5):
1.
Early Miocene climate and biomes of Turkey: Evidence from leaf fossils, dispersed pollen, and petrified wood
Thomas Denk, H. Güner, Johannes Bouchal
Palaeogeography, Palaeoclimatology, Palaeoecology
 
2.
Red and Silver Maples in the Neogene of Western North America: Fossil Leaves and Samaras of Acer Section Rubra
Hai Zhu, Steven Manchester
International Journal of Plant Sciences
 
3.
Fossil samaras of Acer L. (Sapindaceae) from the Upper Pliocene of western Yunnan, southwestern China
Zhuo-Er Wang, Rui Cao, Hong Ding, Yong-Tong Huang, Zhi-Hui Song, Su-Ting Ding, Jing-Yu Wu
Palaeobiodiversity and Palaeoenvironments
 
4.
Acıyavşan’ın (Teucrium polium L. subsp. polium) Iki Farklı Yetişme Ortamında Odun Anatomisi Özellikleri
Esra PULAT, Avni YILDIZBAŞ, Barbaros YAMAN
Bartın Orman Fakültesi Dergisi
 
5.
New fossil woods from the middle Eocene climate optimum of north-central Turkey
Ünal Akkemik, Özlem Toprak, Dimitra Mantzouka
Palaeoworld
 
eISSN:2082-0259
ISSN:0001-6594
Journals System - logo
Scroll to top