ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Abundant occurrence of Pediastrum orientale in the studied polar lake dates back to 8000 years
  • Coenobia of this species represent morphotype "b" found mainly in cold oligotrophic waters
  • Long-term species adaptation of P. orientale may result from small Holocene changes in this area
KEYWORDS
ABSTRACT
The main component of microfossils in the bottom sediments of Reindeer Lake from Spitsbergen, documenting the almost 8,000-year history of this water body, are algae representing colonies of a very rare species Pediastrum orientale (Skuja) Jankovská et Komárek 1995 with only a very small (lower than 1%) admixture of other green algae species. It has also been recorded in other lake sediments in Spitsbergen. The specimens belong to the morphotype “b” of the species, known previously from the Scandinavian lakes. Due to its unique nature and scarce information on ecological conditions, this study analysed the palaeoenvironmental factors favouring the occurrence of Pediastrum orientale together with an assessment of its bioindication value. The affinity of the species to oligotrophic lakes, where blooms of this alga are observed, was confirmed. The presence of numerous colonies of Pediastrum orientale in fossil lake sediments can provide a rationale for inferring palaeoecological conditions, including the trophic state of water bodies, thus expanding knowledge of their evolutionary directions and documenting key events in the geological history of the catchment. Further studies of lake gyttjas in Spitsbergen should pay more attention to the taxonomic composition of Pediastrum and other green algae, as well as to the determinants of sediment deposition in different lake catchment environments.
FUNDING
This research was supported by (1) the project of the National Science Centre No. 2013/09/B/ST10/04141 – ‘The impact of the sea ice conditions in the nearshore zone and shore ice on the wave propagation and coastal morphodynamics in polar regions based on the example of south-western Spitsbergen – the analysis of processes, modelling, and prediction’; (2) European funds under the European Regional Development Fund and The National Centre for Research and Development: ‘Autonomous system of fibre optic quasi-distributed temperature sensor for ground temperature measurement’ (SPILOD) no. POIR.04.01.01-00-0031/19-00.
CONFLICT OF INTEREST
The authors have declared that no competing interests exist.
REFERENCES (70)
1.
Bennett, K., Willis, K.J., 2001. Pollen. In: Birks, H.J.B., Last, W.M., (eds), Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, algal, and siliceous indicators. Springer, pp. 5–32.
 
2.
Berglund, B.E., Ralska-Jasiewiczowa, M., 1986. Pollen analysis and pollen diagrams. In: Berglund, B.E. (ed.), Handbook of Holocene palaeoecology and palaeohydrology. Wiley & Sons, Chichester, pp. 455–484.
 
3.
Bergström, A.-K., Jansson, M., 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology 12, 635–643. https://doi.org/10.1111/j.1365....
 
4.
Birkenmajer, K., 2004. Caledonian basement in NW Wedel Jarlsberg Land south Bellsund, Spitsbergen. Polish Polar Research 27(2), 107–118.
 
5.
Birks, H., Jones, V.J., Rose, N., 2004. Recent Environmental Change and Atmospheric Contamination on Svalbard as Recorded in Lake Sediments – Synthesis and General Conclusions. Journal of Paleolimnology 31, 531–546. https://doi.org/10.1023/B:JOPL....
 
6.
Björck, S., Håkansson, H., Olsson, S., Barnekow., L. Janssens, J., 1993. Palaeoclimatic studies in South Shetland Islands, Antarctica, based on numerous stratigraphic variables in lake sediment. Journal of Paleolimnology 8, 233–272.
 
7.
Blokker, P., Schouten, S., van den Ende, H., de Leeuw, J.W., Hatcher, P.G., Sinninghe Damsteâ, J.S., 1998. Chemical structure of algaenans from the fresh water algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanum. Organic Geochemistry 29, 1453–1468.
 
8.
Boyle, J.F., 2004. A comparison of two methods for estimating the organic matter content of sediments. Journal of Paleolimnology 31, 125–127.
 
9.
Bronk Ramsey, C., 2009. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51, 337–360. https://doi.org/10.1017/S00338....
 
10.
Buchheim, M., Buchheim, J., Carlson, T., Braband, A., Hepperle, D., Krienitz, L., Wolf, M., Hegwald, E., 2005. Phylogeny of the Hydrodictyaceae (Chlorophyceae): inferences from rDNA data. Journal of Phycology 41, 1039–1054.
 
11.
Cronberg, G., 1982. Pediastrum and Scenedesmus (Chlorococcales) in sediment from Lake Växjösjön, Sweden. Archiv für Hydrobiologie – Supplement 60 Algological Studies 26, 53–62.
 
12.
Cronberg, G., 1986. Blue-green algae, green algae and Chrysophyceae in sediments. In: Berglund, B.E., (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, pp. 507–526.
 
13.
Dallmann, W.K., Hjelle, A., Ohta, Y., Salvigsen, O., Bjørnerud, M.B., Hauser, E.C., Maher, H.D., Craddock, C., 1990. Geological Map of Svalbard 1: 100000, sheet B 11G, van 486 Keulenfjorden. Norsk Polarinstitutt, Oslo.
 
14.
Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242–248.
 
15.
Douglas, M.S.V., Smol, J.P., Blake, W. Jr., 1994. Marked post-eighteenth century environmental change in High–Arctic ecosystems. Science 266, 416–419. https://doi.org/10.1126/scienc....
 
16.
Douglas, M.S.V., Hamilton, P.B., Pienitz, R., Smol, J.P., 2004. Algal indicators of environmental change in Arctic and Antarctic lakes and ponds. In: Pienitz, R., Douglas, M.S.V. Smol, J.P. (eds), Long-term Environmental Change in Arctic and Antarctic Lakes. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 117–157.
 
17.
Fredskild, B., 1983. The Holocene development of some low and high arctic Greenland lakes. Hydrobiologia 103, 217–224.
 
18.
Gajewski, K., Hamilton, P.B., Mcneely, R., 1997. A high resolution proxy-climate record from an arctic lake with annually laminated sediments on Devon Island, Nunavut, Canada. Journal of Paleolimnology 17, 215–225. https://doi.org/10.1023/A:1007....
 
19.
Gjerde, M., Bakke, J., D’Andrea, W.J., Balascio, N.L., Bradley, R.S., Vasskog, K., Ólafsdóttir, S., Røthe, T.O., Perren, B.B., Hormes, A., 2018. Holocene multi-proxy environmental reconstruction from lake Hakluytvatnet, Amsterdamøya Island, Svalbard (79.5°N). Quaternary Science Reviews 183, 164–176. http://dx.doi.org/10.1016/j/qu....
 
20.
Gluza, A., Siwek, K., 2013. Weather conditions. In: Zagórski, P., Harasimiuk, M., Rodzik, J., (eds), Geographical environment of NW part of Wedel Jarlsberg Land (Spitsbergen, Svalbard). UMCS, Lublin, pp. 66–81.
 
21.
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101–110. https://doi.org/10.1023/A:1008....
 
22.
Holmgren, S.U., Bigler, Ch., Ingólfsson, Ó., Wolfe, A.P., 2010. The Holocene–Anthropocene transition in lakes of western Spitsbergen, Svalbard (Norwegian High Arctic): climate change and nitrogen deposition. Journal of Paleolimnology 43, 393–412, https://doi.org/10.1007/s10933....
 
23.
Hoogsteen, M.J.J., Lantinga, E.A., Bakker, E.J., Groot, J.C.J., Tittonell, P.A., 2015. Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water lossView article page. European Journal of Soil Science 66(2), 257–390. https://doi.org/10.1111/ejss.1....
 
24.
Huang, X., Huang, C., Xu, Y., Zheng, M., Ren, X., Chen, X., Hu, Y., Wang, T., Xiang, L., Zhang, J., Chen, F., 2023. Body size of fossil Pediastrum in lake sediments as an indicator of temperature variation. Palaeogeography, Palaeoclimatology, Palaeoecology 625, 111687. https://doi.org/10.1016/j.pala....
 
25.
Huang, X., Xiang, L., Lei, G., Sun, M., Qiu, M., Storozum, M., Huang, C., Munkhbayar, C., Demberel, O., Zhang, J., Zhang, J., Chen, X., Chen, J., Chen, F., 2021. Sedimentary Pediastrum record of middle–late Holocene temperature change and its impacts on early human culture in the desert-oasis area of northwestern China. Quaternary Science Reviews 265, 107054. https://doi.org/10.1016/j.quas....
 
26.
Isaakson, E., Hermanson, M., Hicks, S., Igarashi, M., Kamiyama, K., Moore, J., Motoyama, H., Muir, D., Pohjola, V., Vaikmäe, R., van de Wal, R.S.W., Watanabe, O., 2003. Ice cores from Svalbard – useful archives of past climate and pollution history. Physics and Chemistry of the Earth, Parts A/B/C 28–32, 1217–1228. https://doi.org/10.1016/j.pce.....
 
27.
Jankovská, V., Komárek, J., 1995. Pediastrum orientale from subfossil layers. Folia Geobotanica 30, 319–329. https://doi.org/10.1007/BF0280....
 
28.
Jankovská, V., Komárek, J., 2000. Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobotanica 35, 59–82. https://doi.org/10.1007/BF0280....
 
29.
Jones, V.J., Birks, H.J.B., 2004. Lake-sediment records of recent environmental change on Svalbard: results of diatom analysis. Journal of Paleolimnology 31, 445–466. https://doi.org/10.1023/B:JOPL....
 
30.
Komárek, J., Fott, B., 1983. Chlorophyceae (Grünalgen). Ordnung: Chlorococcales. In: Huber-Pestalozzi, G., (ed.), Das Phytoplankton des Süsswassers, Systematik und Biologie 7, 1, Schweizerbart, Stuttgart.
 
31.
Komárek, J., Jankovská, V., 2001. Review of the Green Algal Genus Pediastrum; implication for pollen-analytical research. Bibliotheca Phycologica 108, 1–127.
 
32.
Kowalska, J., Wołowski, K., 2010. Rare Pediastrum species (Chlorophyceae) from Polish coastal lakes. Acta Societatis Botanicorum Poloniae 79(3), 225–233.
 
33.
Krienitz, L., Bock, C., 2012 Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 698, 295–326. https://doi.org/10.1007/s10750....
 
34.
Leipe, C., Demske, D., Tarasov, P.E., Wünnemann, B., Riedel, F., HIMPAC Project Members, 2014. Potential of pollen and non-pollen palynomorph records from Tso Moriri (Trans-Himalaya, NW India) for reconstructing Holocene limnology and human – environmental interactions. Quaternary International 348, 113–129. https://doi.org/10.1016/j.quai....
 
35.
Lenarczyk, J., 2014. The algal genus Pediastrum (Meyen) Chlorophyta in Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, pp. 1–104.
 
36.
Lenarczyk, J., 2015. Pediastrum Meyen sensu lato (Chlorophyceae) in the phytoplankton of lowland and upland water bodies of Central Europe (Poland). Fottea 15(2), 165–177.
 
37.
Lenarczyk, J., 2019. Evolution of morphological variability and modularity in single cells of algal colonies: a case study Pseudopediastrum (Hydrodictyaceae, Sphaeropleales, Chlorophyceae). Phycologia 58, 180–191. https://doi.org/10.1080/003188....
 
38.
Lenarczyk, J., Saługa, M., Piątek, J., 2020. Integrative approach helps clarify confusing taxonomy of the Pseudopediastrum boryanum species complex (Chlorophyceae), including recognition of five distinct species. Journal of Phycology 56, 1557–1574. https://doi.org/10.1111/jpy.13....
 
39.
Luka Sato in Guiry, M.D., Guiry, G.M., 13 July 2023. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 09 December 2023.
 
40.
Lutyńska, M., 2011. Preliminary results of paleoecological investigation of intermittent tundra lakes on Spitsbergen (Petuniabukta). Studia Limnologica and Telmatologica 5(2), 77–84.
 
41.
Lütje, J.P., 2014. Genetic diversity in green algae (Hydrodictyaceae) obtained from modern and ancient sedimentary DNA of Siberian lakes. Freie Universität Berlin, Institute of Chemistry and Biochemistry. Bachelor thesis. Mnsc.I.A.
 
42.
Marsz, A.A., Styszyńska, A., 2013. Climate and Climate Changes at Hornsund, Svalbard. Gdynia Maritime University, 402 pp.
 
43.
McManus, H.A., Lewis, L.A., 2005. Molecular phylogenetics, morphological variation and colony-form evolution in the family Hydrodictyaceae (Sphaeropleales, Chlorophyta). Phycologia 44, 582–595.
 
44.
McManus, H.A., Lewis, L.A., 2011. Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaeopleales, Chlorophyceae), with an emphasis on Pediastrum duplex. Journal of Phycology 47, 152–163.
 
45.
McManus, H.A., Fučíková, K., Lewis, P.O., Lewis, L.A., Karol, K.G., 2018. Organellar phylogenomics inform systematics in the green algal family Hydrodictyaceae (Chlorophyceae) and provide clues to the complex evolutionary history of plastid genomes in the green algal tree of life. American Journal of Botany 105(3), 315–329. https://doi.org/10.1002/ajb2.1....
 
46.
Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: D.L. Sparks, A.L., Page, P.A., Helmke, R.H., Loeppert, P.N., Soltanpour, M.A., Tabatabai, C.T., John- ston, M.E., Sumner (eds), Methods of soil analysis. Part 3: Chemical methods. (Soil Science Society of America, Inc., American Society of Agronomy, Inc.: Madison, WI, pp. 961–1010.
 
47.
Nielsen, H., Sørensen, I., 1992. Taxonomy and stra- tigraphy of the Late-Glacial Pediastrum taxa from Lysmosen, Denmark – a preliminary study. Review of Palaeobotany and Palynology 74, 55–75.
 
48.
Nowiński, K., Wiśniewska-Wojtasik, B., 2006. Diversity of abiotic properties of water in shallow lakes in Hornsund area (SW Spitsbergen). Limnological Review 6, 209–216.
 
49.
Pasztaleniec, A., Poniewozik, M., 2004. Pediastrum species (Hydrodictyaceae, Sphaeropleales) in phytoplankton of Sumin lake (Łęczna-Włodawa Lakeland). Acta Societatis Botanicorum Poloniae 73(1), 39–46.
 
50.
Pidek, I.A., 2003. Mesopleistocene vegetation history in the northern foreland of the Lublin Upland based on palaeobotanical studies of the profiles from Zdany and Brus sites. Maria Curie-Sklodowska University Press, Lublin, pp. 96.
 
51.
Pokorný, P., Jankovská, V., 2000. Long-term vegetation dynamics and the infilling process of a former lake (Svarcenberk, Czech Republic). Folia Geobotanica 35, 433–457.
 
52.
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheler, R., Palmer, J.G., Pearson, C., van der Plicht, J., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., Talamo, S., 2020. the IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon 62, 725–757.
 
53.
Rodzik, J., 1988. Distribution and structure of the snow cover in the tundra of calypsostranda in the season 1987 year. Geographical expeditions of UMCS in Spitsbergen, Lublin, 93–102. (in Polish).
 
54.
Sickman, J.O., Melack, J.M., Clow, D.W., 2003. Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California. Limnology and Oceanography 48, 1885–1892.
 
55.
Smol, J.P., Wolfe, A.P., Birks, H.J.B., Douglas, M.S., Jones, V., Korhola, A., Pienitz, R., Rühland, K., Sorvari, S., Antoniades, D., Brooks, S.J., Fallu, M., Hughes, M., Keatley, B.E., Laing, T.E., Michelutti, N., Nazarova, L., Nyman, M., Paterson, A.M., Perren, B., Quinlan, R., Rautio, M., Saulnier-Talbot, E., Siitonen, S., Solovieva, N., Weckström, J., 2005. Climate-driven regime shifts in the biological communities of arctic lakes. PNAS 102, 4397–4402. https://doi.org/10.1073/pnas.0....
 
56.
Sorvari, S., Korhola, A., Thompson, R., 2002. Lake di tom responses to recent Arctic warming in Finnish Lapland. Global Change Biology 8, 153–164. https://doi.org/10.1046/j.1365....
 
57.
Stivrins, N., Kołaczek, P., Reitalu, T., Seppä, H., Veski, S., 2015. Phytoplankton response to the environmental and climatic variability in a temperate lake over the last 14,500 years in eastern Latvia. Journal of Paleolimnology 54(1), 103–119. https://doi.org/10.1007/s10933....
 
58.
Szumińska, D., Szopińska, M., Lehmann-Konera, S., Franczak, Ł., Kociuba, W., Chmiel, S., Kalinowski, P., Polkowska, Ż., 2018. Water chemistry of tundra lakes in the periglacial zone of the Bellsund Fiord (Svalbard) in the summer of 2013. Science of the Total Environment 624, 1669–1679. https://doi.org/10.1016/j.scit....
 
59.
Turner, F., Pott, R., Schwarz, A., Schwalb, A., 2014. Response of Pediastrum in German floodplain lakes to Late Glacial climate changes. Journal of Paleolimnology 52, 293–310.
 
60.
Turner, F., Zhu, L., Lü, X., Peng, P., Ma., Q., Wang, J., Hou, J., Lin, Q., Yang., R., Frenzel, P., 2016. Pediastrum sensu lato (Chlorophyceae) assemblages from surface sediments of lakes and ponds on the Tibetan Plateau. Hydrobiologia 771, 101–118. https://doi.org/10.1007/s10750....
 
61.
Weckström, K., Weckström, J., Yliniemi, L.-M., Korhola, A., 2010. The ecology of Pediastrum (Chlorophyceae) in subarctic lakes and their potential as paleobioindicators. Journal of Paleolimnology 43, 61–73. https://doi.org/10.1007/s10933....
 
62.
Woelders, L., Lenaerts, J.T.M., Hagemans, K., Akkerman, K., van Hoof, T.B., Hoek, W.Z., 2018. Recent climate warming drives ecological change in a remote high-Arctic lake. Scientific Reports 8, 6858. https://doi.org/10.1038/s41598....
 
63.
Wohlfarth, B., Lemdahl, G., Olsson, S., Persson, T., Snowball, I., Ising, J., Jones, V., 1995. Early Holocene environment on Bjørnoja (Svalbard) inferred from multidisciplinary lake sediment studies. Polar Research 14(2), 253–275. https://doi.org/10.1111/J.1751....
 
64.
Wojtasik, B., 2012. Candona rectangulata Alm, 1914 as an indicator used in the environmental and climate studies. Gdynia: 182 pp.
 
65.
Wolfe, A.P., Perren, B.B., 2001. Chrysophyte microfossils record marked responses to recent environmental changes in high- and mid-arctic lakes. Canadian Journal of Botany 79, 747–752. https://doi.org/10.1139/cjb-79....
 
66.
Wołowski, K., Obidowicz, A., Wawrzycka, I., 2002. Pediastrum species in Quaternary sediments of “Żabie Oko” peat bog in the Tatra Mts. Acta Palaeobotanica 42, 51–61.
 
67.
Xiang, L., Chen, X., Huang, C., Sun, M., Xiao, Y., Hu, Y., Huang, X., 2021a. Divergent patterns of Holocene hydro-climatic evolution in arid central Asia and the Asian summer monsoon margin indicated by Pediastrum records. Palaeogeography, Palaeoclimatology, Palaeoecology 582, 110662. https://doi.org/10.1016/j.pala....
 
68.
Xiang, L., Huang, X., Huang, C., Chen, X., Wang, H., Chen, J., Hu, Y., Sun, M., Xiao, Y., 2021b. Pediastrum (Chlorophyceae) assemblages in surface lake sediments in China and western Mongolia and their environmental significance. Review of Palaeobotany and Palynology 289, 104396. https://doi.org/10.1016/j.revp....
 
69.
Xiang, L., Huang, X., Sun, M., Panizzo, V.N., Huang, C., Zheng, M., Chen, X., Chen, F., 2023. Prehistoric population expansion in Central Asia promoted by the Altai Holocene Climatic Optimum. Nature Communications 14, 3102.
 
70.
Zagórski, P., Rodzik, J., Strzelecki, M.C., 2013. Coastal geomorphology. In: Zagorski, P., Harasimiuk, M., Rodzik, J. (eds), Geographical environment of NW part of Wedel Jarlsberg Land (Spitsbergen, Svalbard). Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, pp. 212–247.
 
 
CITATIONS (1):
1.
Western Mongolian Plateau exhibits increasing Holocene temperature
Chong Huang, Xiaozhong Huang, Jinbao Li, Ling Wang, Lan Jiang, Lixiong Xiang, Jun Zhang, Yu Hu, Xiaoyan Mu, Min Zheng, Xiuxiu Ren, Tao Wang, Jiawu Zhang, Guoliang Lei, Otgonbayar Demberel, Xiaodong Liu, Natalia Rudaya, Antje Schwalb, Yanwu Duan, Jule Xiao, Fahu Chen
Global and Planetary Change
 
eISSN:2082-0259
ISSN:0001-6594
Journals System - logo
Scroll to top