ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Unusual great preservation of 3500 year old charcoal, which conserved original structures and even fungus.
  • Histological structural elements such as woody vascular bundles - xylem, quadrangular tracheids, with pits in the shape of circular or elliptical holes, transverse parenchyma and absence of resin canals, characteristics that correspond to a species of woody tree from the group of Gymnosperms, of the family Podocarp
KEYWORDS
ABSTRACT
Several samples of fossilized wood (charcoal) were collected in the Papayita archaeological site, in coastal Ecuador. This carbonized material was encountered inside a layer of volcanic ash that sealed the site. The ash-sized tephra was produced by a sub-Plinian eruption from the Guagua Pichincha volcano contemporaneous with the late Valdivia phases during the Formative Period. Each of the samples was sectioned into 10 to 15 subsamples and examined under a Scanning Electron Microscope (SEM), producing high-resolution images with a large depth of field where the anatomical structures and their geochemical composition were vividly discernible. Each sample corresponds to organic matter of vegetable origin, that is, carbonized wood in the form of small rocks, whose appearance is that of carbonized woody tree trunks and or branches. We were able to observe vascular structures, specifically bundles of xylem. It was possible to conclude that these tracheids underwent a physicochemical transformation typical of petrification processes, leaving the molds intact. This allowed us to determine structural elements that support the identification of the group of plants to which these samples belong, through the methodology of comparison of the anatomical components of current species. The fossilized wood structures are three-dimensional and present characteristics that correspond to the group of higher plants, Gymnosperms, of the Podocarpaceae group. Among them, quadrangular tracheids, circular hole-shaped pits in the vascular system, and absent resin canals stand out. Central to the analysis is the presence of transverse parenchyma, which can be ascertained to correspond to vegetation from climates that are temperate or cold.
FUNDING
No
CONFLICT OF INTEREST
The authors have declared that no competing interests exist.
 
REFERENCES (147)
1.
Aguirre, W.E., Alvarez-Mieles, G., Anaguano-Yancha, F., Burgos Morán, R., Cucalón, R.V., Escobar-Camacho, D., Jácome-Negrete, I., Jiménez Prado, P., Laaz, E., Miranda-Troya, K., Navarrete-Amaya, R., Nugra Salazar, F., Revelo, W., Rivadeneira, J.F., Valdiviezo Rivera, J., Zárate Hugo, E., 2021. Conservation threats and future prospects for the freshwater fishes of Ecuador: A hotspot of Neotropical fish diversity. Journal of Fish Biology 99(4), 1158–1189. https://doi.org/10.1111/jfb.14....
 
2.
Ardelean, C.F., Becerra-Valdivia, L., Pedersen, M.W., Schwenninger, J.L., Oviatt, C.G., Macías-Quintero, J.I., Arroyo-Cabrales, J., Sikora, M., Ocampo-Díaz, Y.Z.E., Rubio-Cisneros, I.I., Watling, J.G., de Medeiros, V.B., De Oliveira, P.E., Barba-Pingarón, L., Ortiz-Butrón, A., Blancas-Vázquez, J.,Rivera-González, I., Solís-Rosales, C., Rodríguez-Ceja, M., Gandy, D.A., Navarro-Gutierrez, Z., De La Rosa-Díaz, J.J., Huerta-Arellano, V., Marroquín-Fernández, M.B., Martínez-Riojas, L.M., López-Jiménez, A., Higham, T., Willerslev, E., 2020. Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature 584(7819), 87–92. https://doi.org/10.1038/s41586....
 
3.
Asouti, E., 2003. Wood charcoal from Santorini (Thera): new evidence for climate, vegetation and timber imports in the Aegean Bronze Age. Antiquity 77(297), 471–484. https://doi.org/10.1017/S00035....
 
4.
Bablon, M., Ratzov, G., Nauret, F., Samaniego, P., Michaud, F., Saillard, M., Proust, J.-N., Le Pennec, J.-L., Collot, J.-Y., Devidal, J.-L., Orange, F., Liorzou, C., Migeon, S., Vallejo, S., Hidalgo, S., Mothes, P., Gonzalez, M., 2022. Holocene marine tephra offshore Ecuador and Southern Colombia: First trench-to-arc correlations and implication for magnitude of major eruptions. Geochemistry, Geophysics, Geosystems 23, e2022GC010466. https://doi.org/10.1029/2022GC....
 
5.
Belousov, A., Voight, B., Belousova, M., 2007. Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits. Bulletin of Volcanology 69, 701–740.
 
6.
Bosi, G., Mazzanti, M.B., Florenzano, A., N’siala, I.M., Pederzoli, A., Rinaldi, R., Torri, P., Mercuri, A.M., 2011. Seeds/fruits, pollen and parasite remains as evidence of site function: piazza Garibaldi – Parma (N Italy) in Roman and Mediaeval times. Journal of Archaeological Science 38(7), 1621–1633. https://doi.org/10.1016/j.jas.....
 
7.
Bosshard, H.H., 1955. Structure of a classic raw material. The Scientific Monthly 81(5), 224–233.
 
8.
Bowles, F.A., Jack, R.N., Carmichael, I.S.E., 1973. Investigation of deep-sea volcanic ash layers from equatorial Pacific cores. Geological Society of America Bulletin 84(7), 2371–2388.
 
9.
Bremer, L.L., Farley, K A., DeMaagd, N., Suárez, E., Carate Tandalla, D., Vasco Tapia, S., Mena Vásconez, P., 2019. Biodiversity outcomes of payment for ecosystem services: lessons from páramo grasslands. Biodiversity and Conservation 28, 885–908. https://doi.org/10.1007/s10531....
 
10.
Bronk Ramsey, C., 2008. Radiocarbon dating: revolutions in understanding. Archaeometry 50(2), 249–275. https://doi.org/10.1111/j.1475....
 
11.
Bronk Ramsey, C., 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3), 1023–1045.
 
12.
Bronk Ramsey, C., Scott, E.M., Van der Plicht, J., 2013. Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal BP. Radiocarbon 55(4), 2021–2027.
 
13.
Bruijnzeel, L.A., Kappelle, M., Mulligan, M., Scatena, F.N., 2010. Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world. In: Bruijnzeel L.A., Scatena, F.N., Hamilton, L.S., (eds), Tropical Montane Cloud Forests: Science for Conservation and Management. International Hydrology Series. Cambridge University Press, pp. 691–740.
 
14.
Bruijnzeel, L.A., Mulligan, M., Scatena, F.N., 2011. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Processes 25(3), 465–498.
 
15.
Bufalino, L., de Souza, T.M., Lima, N.N., de Sá, V.A., Tonoli, G.H.D., Ferreira, C.A., Savastano Junior, H., Barbosa de Sous, R., Lira Zidanes, U., de Paula Protsio, T., Lima, M.D.R., Mendes, L.M., 2023. Contrasting the major characteristics of pinewood and Amazon hardwoods to provide high-quality cement-bonded particleboards. Construction and Building Materials 394, 132219. https://doi.org/10.1016/j.conb....
 
16.
dos Santos, A.C.S., Guerra-Sommer, M., Degani-Schmidt, I., Siegloch, A.M., de Souza Carvalho, I., Mendonca Filho, J.G., de Oliveira Mendonça, J., 2020. Fungus–plant interactions in Aptian Tropical Equatorial Hot arid belt: White rot in araucarian wood from the Crato fossil Lagerstätte (Araripe Basin, Brazil). Cretaceous Research 114, 104525. https://doi.org/10.1016/j.cret....
 
17.
Cárdenas, M.L., Gosling, W.D., Pennington, R.T., Poole, I., Sherlock, S.C., Mothes, P., 2014. Forests of the tropical eastern Andean flank during the middle Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 393, 76–89. https://doi.org/10.1016/j.pala....
 
18.
Castañeda-Posadas, C., 2023. Podocarpus (Podocarpaceae) wood from miocene rocks in Panotla, Tlaxcala, Mexico. Journal of South American Earth Sciences 121, 104118. https://doi.org/10.1016/j.jsam....
 
19.
Chen, J.J., Zong, S.B., Huang, X.X., Yu, J., Yang, H.J., Ye, W.W., 2022. Molecular and Morphological Characterization of Two New Species of Globisporangium from Southern China, G. pengfuense and G. tenuihyphum. Diversity 14(7), 528. https://doi.org/10.3390/d14070....
 
20.
Chester, D.K., Duncan, A.M., Guest, J.E., 1987. The pyroclastic deposits of Mount Etna volcano, Sicily. Geological Journal 22(3), 225–243.
 
21.
Chidumayo, E.N., Gumbo, D.J., 2013. The environmental impacts of charcoal production in tropical ecosystems of the world: A synthesis. Energy for Sustainable Development 17(2), 86–94.
 
22.
Clark, J.S., 1988. Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quaternary Research 30(1), 67–80.
 
23.
Correa, Á.M.V., Vara, E.A., Machuca, M.Á.H., 2010. Wood anatomy of Colombian Podocarpaceae (Podocarpus, Prumnopitys and Retrophyllum). Botanical Journal of the Linnean Society 164(3), 293–302.
 
24.
Creber, G.T., Ash, S.R., 1990. Evidence of wide-spread fungal attack on Upper Triassic trees in the southwestern USA. Review of Palaeobotany and Palynology 63(3–4), 189–195. https://doi.org/10.1016/0034-6....
 
25.
Dalling, J.W., Barkan, P., Bellingham, P.J., Healey, J.R., Tanner, E.V., 2011. Ecology and Distribution of Neotropical Podocarpaceae. In: Turner, B.L., Cernusak, L.A. (eds), Ecology of the Podocarpaceae in Tropical Forests. Washington, D.C. Smithsonian Institution Scholarly Press, pp. 43–56. https://doi.org/10.5479/si.008....
 
26.
Debut, A., Toulkeridis, T., Vaca, A.V., Arroyo, C.R., 2021. Origin of color variations of thin, nano-sized layers of volcanic cinder from the Sierra Negra Volcano of the Galapagos Islands. Uniciencia 35(2), 210–222.
 
27.
DiMichele, W.A., Gastaldo, R.A., 2008. Plant paleoecology in Deep Time1. Annals of the Missouri Botanical Garden 95(1), 144–198.
 
28.
Di Muro, A., Rosi, M., Aguilera, E., Barbieri, R., Massa, G., Mundula, F., Pieri, F., 2008. Transport and sedimentation dynamics of transitional explosive eruption columns: the example of the 800 BP Quilotoa Plinian eruption (Ecuador). Journal of Volcanology and Geothermal Research 174(4), 307–324.
 
29.
Dodson, C.H., Gentry, A.H., 1991. Biological extinction in western Ecuador. Annals of the Missouri Botanical Garden 78(2), 273–295. https://doi.org/10.2307/239956....
 
30.
Donaldson, L.A., 1983. Anatomy of root wood in Araucariaceae and some Podocarpaceae indigenous to New Zealand. New Zealand Journal of Botany 21(3), 221–227.
 
31.
Dufraisse, A., 2006. Charcoal anatomy potential, wood diameter and radial growth. BAR International Series 1483, 47.
 
32.
Dyez, K.A., Zahn, R., Hall, I.R., 2014. Multicentennial Agulhas leakage variability and links to North Atlantic climate during the past 80,000 years. Paleoceanography and Paleoclimatology 29(12), 1238–1248. https://doi.org/10.1002/2014PA....
 
33.
Ekins, P., Simon, S., Deutsch, L., Folke, C., De Groot, R., 2003. A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecological Economics 44(2–3), 165–185. https://doi.org/10.1016/S0921-....
 
34.
Estrada, E., Meggers, B.J., 1956. A complex of traits of probable transpacific origin on the coast of Ecuador. Transactions of the New York Academy of Sciences 18(5 Series II), 436–442.
 
35.
Falcon-Lang, H.J., 2005. Intra-tree variability in wood anatomy and its implications for fossil wood systematics and palaeoclimatic studies. Palaeontology 48(1), 171–183. https://doi.org/10.1111/j.1475....
 
36.
Fedoroff, N., Courty, M.A., Thompson, M.L., 1990. Micromorphological evidence of paleoenvironmental change in Pleistocene and Holocene paleosols. Developments in Soil Science 19, 653–665. https://doi.org/10.1016/S0166-....
 
37.
Figueiral, I., Mosbrugger, V., 2000. A review of charcoal analysis as a tool for assessing Quaternary and Tertiary environments: achievements and limits. Palaeogeography, Palaeoclimatology, Palaeoecology 164(1–4), 397–407. https://doi.org/10.1016/S0031-....
 
38.
Florian, M.L.E., 1991. 1 Plant Anatomy: An Illustrated Aid to Identification. The conservation of artifacts made from plant materials, 1.
 
39.
Foster, P., 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55(1–2), 73–106. https://doi.org/10.1016/S0012-....
 
40.
Francis, J.E., Poole, I., 2002. Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeography, Palaeoclimatology, Palaeoecology 182(1–2), 47–64. https://doi.org/10.1016/S0031-....
 
41.
Fries, A., Rollenbeck, R., Nauß, T., Peters, T., Bendix, J., 2012. Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agricultural and Forest Meteorology 152, 17–30. https://doi.org/10.1016/j.agrf....
 
42.
Gardner, M., 2013. Podocarpus oleifolius. The IUCN Red List of Threatened Species 2013: e.T46413452A2984968. https://dx.doi.org/10.2305/IUC.... Accessed on 17 June 2023.
 
43.
Giacomelli, L., Perrotta, A., Scandone, R., Scarpati, C., 2003. The eruption of Vesuvius of 79 AD and its impact on human environment in Pompeii. Episodes Journal of International Geoscience 26(3), 235–238.
 
44.
Giannotas, G., Kamperidou, V., Barboutis, I., 2021. Tree bark utilization in insulating bio-aggregates: a review. Biofuels, Bioproducts and Biorefining 15(6), 1989–1999.
 
45.
Giri, C.C., Shyamkumar, B., Anjaneyulu, C., 2004. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees 18, 115–135. https://doi.org/10.1007/s00468....
 
46.
Glasspool, I.J., Scott, A.C., 2013. Identifying past fire events. In: Belcher, C.M. (eds), Fire phenomena and the Earth system: an interdisciplinary guide to fire science. Willey-Blackwell, pp. 177–206.
 
47.
González, O.M., Velín, A., García, A., Arroyo, C.R., Barrigas, H.L., Vizuete, K., Debut, A., 2020. Representative Hardwood and Softwood Green Tissue-Microstructure Transitions per Age Group and Their Inherent Relationships with Physical–Mechanical Properties and Potential Applications. Forests 11(5), 569. https://doi.org/10.3390/f11050....
 
48.
Greguss, P., 1955. Identification of living gymnosperms on the basis of xylotomy. Akademiai Kiado, Budapest.
 
49.
Grootes, P.M., 1978. Carbon-14 Time Scale Extended: Comparison of Chronologies: Thermal diffusion isotopic enrichment of carbon-14 brings 75,000 years ago within dating range. Science 200(4337), 11–15. https://doi.org/10.1126/scienc....
 
50.
Guerry, A.D., Polasky, S., Lubchenco, J., Chaplin-Kramer, R., Daily, G.C., Griffin, R., Ruckelshaus, M., Bateman, I.J., Duraiappah, A., Elmqvist, T., Feldman, M.W., Folke, C., Hoekstra, J., Kareiva, P.M., Keeler, B.L., Li, S., McKenzie, E., Ouyang, Z., Reyers, B., Ricketts, T.H., Rockström, J., Tallis, H., Vira, B., 2015. Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the National Academy of Sciences 112(24), 7348–7355. https://doi.org/10.1073/pnas.1....
 
51.
Hajdas, I., Ascough, P., Garnett, M.H., Fallon, S.J., Pearson, C.L., Quarta, G., Spalding, K.L., Yamaguchi, H., Yoneda, M., 2021. Radiocarbon dating. Nature Reviews Methods Primers 1(1), 62. https://doi.org/10.1038/s43586....
 
52.
Hansen, G., Wright, M.S., 1999. Recent advances in the transformation of plants. Trends in Plant Sci- ence 4(6), 226–231. https://doi.org/10.1016/S1360-....
 
53.
Harangi, S., Molnár, M., Vinkler, A.P., Kiss, B., Jull, A.J.T., Leonard, A.G., 2010. Radiocarbon dating of the last volcanic eruptions of Ciomadul volcano, Southeast Carpathians, eastern-central Europe. Radiocarbon 52(3), 1498–1507. https://doi.org/10.1017/S00338....
 
54.
Hatcher, P.G., 2002. Wood Associated with the AD 79 Eruption. In: Jashemski, W.F., Meyer, F.G., (eds), The Natural History of Pompeii. Cambridge University Press, Cambridge, pp. 217–224.
 
55.
Hatipoğlu, M., Türk, N., 2009. A combined polarizing microscope, XRD, SEM, and specific gravity study of the petrified woods of volcanic origin from the Çamlıdere-Çeltikçi-Güdül fossil forest, in Ankara, Turkey. Journal of African Earth Sciences 53(4–5), 141–157. https://doi.org/10.1016/j.jafr....
 
56.
Hibbett, D.S., Grimaldi, D., Donoghue, M.J., 1997. Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of Homobasidiomycetes. American Journal of Botany 84(7), 981–991. https://doi.org/10.2307/244628....
 
57.
Hibbett, D., Blanchette, R., Kenrick, P., Mills, B., 2016. Climate, decay, and the death of the coal forests. Current Biology 26(13), R563–R567. https://doi.org/10.1016/j.cub.....
 
58.
Hill, B.D., 1972. A new chronology of the Valdivia ceramic complex from the coastal zone of Guayas Province, Ecuador. Ñawpa Pacha 10(1), 1–32. https://doi.org/10.1179/naw.19....
 
59.
Hudspith, V.A., Scott, A.C., Wilson, C.J., Collinson, M.E., 2010. Charring of woods by volcanic processes: an example from the Taupo ignimbrite, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 291(1–2), 40–51. https://doi.org/10.1016/j.pala....
 
60.
Im, J.H., Shim, S.H., Choo, C.O., Jang, Y.D., Lee, J.S., 2012. Volcanological and paleoenvironmental implications of charcoals of the Nari Formation in Nari Caldera, Ulleung Island, Korea. Geosciences Journal 16, 105–114. https://doi.org/10.1007/s12303....
 
61.
Isaacson, J.S., 1994. Volcanic sediments in archaeological contexts. In: J.A., Zeidler, D.M., Pearsall (eds), Regional Archaeology in Northern Manabí, Ecuador, Volume 1: Environment, Cultural Chronology, and Prehistoric Subsistence in the Jama River Valley. University of Pittsburgh Memoirs in Latin American Archaeology No. 8. Ediciones Libri Mundi, pp. 131–140.
 
62.
Jørgensen, P.M., León-Yánez, S., 1999. Catalogue of the vascular plants of Ecuador. Monographs in Systematic Botany from The Missouri Botanical Garden 75: i–viii, 1–1182.
 
63.
Jørgensen, P.M., Ulloa Ulloa, C., León, B., León-Yánez, S., Beck, S.G., Nee, M., Zarucchi, J.L., Celis, M., Bernal, R., Gradstein, R., 2011. Regional patterns of vascular plant diversity and endemism. In: Herzog, S.K., Martínez, R., Jørgensen, P.M., Tiessen, H. (eds), Climate Change and Biodiversity in the Tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), pp. 192–203.
 
64.
Kabukcu, C., 2018. Wood charcoal analysis in archaeology. In: Pişkin, E., Marciniak, A., Bartkowiak, M. (eds), Environmental Archaeology. Interdisciplinary Contributions to Archaeology. Springer, Cham, pp. 133–154. https://doi.org/10.1007/978-3-....
 
65.
Kanomata, Y., Marcos, J., Lazin, B., 2016. Insights into the earliest formative period of coastal Ecuador: New evidence and radiocarbon dates from the Real Alto site. Radiocarbon 58(2), 323–330. https://doi.org/10.1017/rdc.20....
 
66.
Keech, O., Carcaillet, C., Nilsson, M.C., 2005. Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant and Soil 272, 291–300. https://doi.org/10.1007/s11104....
 
67.
Kessler, M., 2002. The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. Journal of Biogeography 29(9), 1159–1165. https://doi.org/10.1046/j.1365....
 
68.
Kuczumow, A, 2004. Microprobe investigations of patterned natural and petrified biological objects. Journal of Alloys and Compounds 362(1–2), 71–82. https://doi.org/10.1016/S0925-....
 
69.
Kuczumow, A., Chevallier, P., Dillmannb, P., Wajnberg, P., Rudaś, M., 2000. Investigation of petrified wood by synchrotron X-ray fluorescence and diffraction methods. Spectrochimica Acta Part B: Atomic Spectroscopy 55(10), 1623–1633. https://doi.org/10.1016/S0584-....
 
70.
Lathrap, D.W., Collier, D., Chandra, H., 1975. Ancient Ecuador: culture, clay and creativity, 3000–300 BC. Field Museum of Natural History, Chicago.
 
71.
Lathrap, D.W., Marcos, J.G., Zeidler, J.A., 1977. Real Alto: An ancient ceremonial center. Archaeology 30(1), 2–13.
 
72.
Lewis, R.J., Tibby, J., Arnold, L.J., Barr, C., Marshall, J., McGregor, G., Gadd, P.S., Yokoyama, Y., 2020. Insights into subtropical Australian aridity from Welsby Lagoon, north Stradbroke Island, over the past 80,000 years. Quaternary Science Reviews 234, 106262. https://doi.org/10.1016/j.quas....
 
73.
Lin, X., Heitman, J., 2005. Chlamydospore formation during hyphal growth in Cryptococcus neoformans. Eukaryotic Cell 4(10), 1746–1754.
 
74.
Lo Moaco, S., López, L., 2014. Study of petrified wood from Mesa Formation (Pleistocene), Anzoategui state, Venezuela by electron probe microanalysis (EPMA). Acta Microscopica 23(2), 90–100.
 
75.
Luu-Dam, N.A., Lu, N.T., Pham, T.H., Do, T.V., 2023. Classification of Vascular Plants in Vietnam According to Modern Classification Systems. Plants 12(4), 967. https://doi.org/10.3390/plants....
 
76.
Maiuri, A., 1958. Pompeii. Scientific American 198(4), 68–82.
 
77.
Martin, S.C., 2020. Past eruptions and future predictions: Analyzing ancient responses to Mount Vesuvius for use in modern risk management. Journal of Volcanology and Geothermal Research 396, 106851. https://doi.org/10.1016/j.jvol....
 
78.
Martínez-Pabello, P.U., Sedov, S., Solleiro-Rebolledo, E., Solé, J., Pi-Puig, T., Alcántara-Hernández, R.J., Lebedeva, M., Shishkov, V., Villalobos, C., 2021. Rock varnish in La Proveedora/Sonora in the context of desert geobiological processes and landscape evolution. Journal of South American Earth Sciences 105, 102959. https://doi.org/10.1016/j.jsam....
 
79.
Martinez, L.C., Pujana, R.R., Monferran, M., Cajade, R., Hernándo, A.B., Zaracho, V.H., Gallego, O.F., 2023. Conifer Fossil Woods from the Late Jurassic–Early Cretaceous (Solari/Botucatú Formation) of the Paraje Tres Cerros (Corrientes Province), Northeast Argentina. Ameghiniana 60(1), 97–110. https://doi.org/10.5710/AMGH.0....
 
80.
Marynowski, L., Smolarek, J., Bechtel, A., Philippe, M., Kurkiewicz, S., Simoneit, B.R., 2013. Perylene as an indicator of conifer fossil wood degradation by wood-degrading fungi. Organic Geochemistry 59, 143–151. https://doi.org/10.1016/j.orgg....
 
81.
Mato, F., Toulkeridis, T., 2017. An unsupervised K-means based clustering method for geophysical post-earthquake diagnosis. In: IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 2017, pp. 1–8. https://doi.org/10.1109/SSCI.2....
 
82.
McParland, L.C., Collinson, M.E., Scott, A.C., Steart, D.C., Grassineau, N.V., Gibbons, S.J., 2007. Ferns and fires: experimental charring of ferns compared to wood and implications for paleobiology, paleoecology, coal petrology, and isotope geochemistry. Palaios 22(5), 528–538. https://doi.org/10.2110/palo.2....
 
83.
Meggers, B.J., 1956. Functional and Evolutionary Implications of Community Patterning. In: Wauohope, R. (ed.), Seminars in Archaeology: 19551. Memoirs of the Society for American Archaeology 11, 129–152. Salt Lake.
 
84.
Mencl, V., Holeček, J., Rößler, R., Sakala, J., 2013. First anatomical description of silicified calamitalean stems from the upper Carboniferous of the Bohemian Massif (Nová Paka and Rakovník areas, Czech Republic). Review of Palaeobotany and Palynology 197, 70–77. https://doi.org/10.1016/j.revp....
 
85.
Miyabuchi, Y., Sugiyama, S., Nagaoka, Y., 2012. Vegetation and fire history during the last 30,000 years based on phytolith and macroscopic charcoal records in the eastern and western areas of Aso Volcano, Japan. Quaternary International 254, 28–35. https://doi.org/10.1016/j.quai....
 
86.
Montes, C., Rodríguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S., Cardona, A., 2019. Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews 198, 102903. https://doi.org/10.1016/j.ears....
 
87.
Moser, D., Nelle, O., Di Pasquale, G., 2018. Timber economy in the Roman Age: charcoal data from the key site of Herculaneum (Naples, Italy). Archaeological and Anthropological Sciences 10, 905–921. https://doi.org/10.1007/s12520....
 
88.
Neill, D.A., 2012. ¿Cuántas especies nativas de plantas vasculares hay en Ecuador? Revista Amazónica Ciencia y Tecnología 1(1), 70–83.
 
89.
Newhall, C.G., Self, S., 1982. The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research: Oceans 87(C2), 1231–1238. https://doi.org/10.1029/JC087i....
 
90.
O’Carroll, E., Mitchell, F.J., 2012. Charcoal sample guidelines: new methodological approaches towards the quantification and identification of charcoal samples retrieved from archaeological sites. Wood and charcoal: Evidence for human and natural history. SAGVNTVM EXTRA-13, Valencia, 275–281.
 
91.
Ornelas, J.F., Ortiz-Rodríguez, A.E., Ruiz-Sánchez, E., Sosa, V., Pérez-Farrera, M.Á., 2019. Ups and downs: genetic differentiation among populations of the Podocarpus (Podocarpaceae) species in Mesoamerica. Molecular Phylogenetics and Evolution 138, 17–30. https://doi.org/10.1016/j.ympe....
 
92.
Orsi, G., Piochi, M., Campajola, L., D’Onofrio, A., Gialanella, L., Terrasi, F., 1996. 14C geochronological constraints for the volcanic history of the island of Ischia (Italy) over the last 5000 years. Journal of Volcanology and Geothermal Research 71(2–4), 249–257. https://doi.org/10.1016/0377-0....
 
93.
Page, C.N., 1990. Podocarpaceae. In: Kramer, K.U., Green, P.S. (eds), Pteridophytes and Gymnosperms. The Families and Genera of Vascular Plants, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-....
 
94.
Pandey, S., 2021. Climatic influence on tree wood anatomy: a review. Journal of Wood Science 67(1), 1–7. https://doi.org/10.1186/s10086....
 
95.
Patel, R.N., 1967. Wood anatomy of podocarpaceae indigenous to New Zealand: 1. Dacrydium. New Zealand Journal of Botany 5(2), 171–184. https://doi.org/10.1080/002882....
 
96.
Paterne, M., Guichard, F., Labeyrie, J., 1988. Explosive activity of the South Italian volcanoes during the past 80,000 years as determined by marine tephrochronology. Journal of Volcanology and Geothermal Research 34(3–4), 153–172. https://doi.org/10.1016/0377-0....
 
97.
Pearsall, D.M., Duncan, N.A., Chandler-Ezell, K., Ubelaker, D.H., Zeidler, J.A., 2020. Food and society at Real Alto, an early formative community in south-west coastal Ecuador. Latin American Antiquity 31(1), 122–142. https://doi.org/10.1017/laq.20....
 
98.
Penagos, J.I.C., 2013. Caracterización de materiales a través de medidas de microscopía electrónica de barrido (SEM). Elementos 3(3), 133–146.
 
99.
Podwojewski, P., Poulenard, J., Toulkeridis, T., Gräfe, M., 2022. Polygenic soils in the southern central Ecuadorian highlands as the result of long-lasting pedogenesis, geodynamic processes and climate change. Journal of South American Earth Sciences 120, 104096. https://doi.org/10.1016/j.jsam....
 
100.
Poole, I., 2000. Variation–Nature’s Spanner or an Unrecognized Tool? Palaios 15(5), 371–372. https://doi.org/10.1669/0883-1... OAU%3E2.0.CO;2.
 
101.
Pujana, R.R., Santillana, S.N., Marenssi, S.A., 2014. Conifer fossil woods from the La Meseta Formation (Eocene of Western Antarctica): evidence of Podocarpaceae-dominated forests. Review of Palaeobotany and Palynology 200, 122–137. https://doi.org/10.1016/j.revp....
 
102.
Quattrocchio, M.E., Martinez, M.A., Asensio, M.A., Cornou, M., Olivera, D.E., 2012. Palynology of El Foyel Group (Paleogene), Ñirihuau Basin, Argentina. Revista Brasileira de Paleontologia 15, 67–84. http://dx.doi.org/10.4072/rbp.....
 
103.
Rian, I.M., Sassone, M., 2014. Tree-inspired dendriforms and fractal-like branching structures in architecture: A brief historical overview. Frontiers of Architectural Research 3(3), 298–323. https://doi.org/10.1016/j.foar....
 
104.
Robin, C., Samaniego, P., Le Pennec, J.L., Mothes, P., Van Der Plicht, J., 2008. Late Holocene phases of dome growth and Plinian activity at Guagua Pichincha volcano (Ecuador). Journal of Volcanology and Geothermal Research 176(1), 7–15. https://doi.org/10.1016/j.jvol....
 
105.
Robin, C., Samaniego, P., Le Pennec, J.L., Fornari, M., Mothes, P., van Der Plicht, J., 2010. New radiometric and petrological constraints on the evolution of the Pichincha volcanic complex (Ecuador). Bulletin of Volcanology 72, 1109–1129. https://doi.org/10.1007/s00445....
 
106.
Rowe, S., Duke, G., 2020. Buen Suceso: A New Multicomponent Valdivia Site In Santa Elena, Ecuador. Latin American Antiquity 31(3), 639–645. https://doi.org/10.1017/laq.20....
 
107.
Rumpel, C., Kögel-Knabner, I., Bruhn, F., 2002. Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Organic Geochemistry 33(10), 1131–1142. https://doi.org/10.1016/S0146-....
 
108.
Ryan, P.C., Alvarado, G.E., McCanta, M., Barca, M.K., Davis, G., de Mendoza, L.H., 2022. The importance of overbank deposits and paleosol analyses for comprehensive volcanic hazard evaluation: the case of Holocene volcanism at Miravalles Volcano, Costa Rica. Natural Hazards 112(1), 413–449. https://doi.org/10.1007/s11069....
 
109.
Schramm, A., Stein, M., Goldstein, S.L., 2000. Calibration of the 14C time scale to> 40 ka by 234U–230Th dating of Lake Lisan sediments (last glacial Dead Sea). Earth and Planetary Science Letters 175(1–2), 27–40. https://doi.org/10.1016/S0012-....
 
110.
Scott, A.C., 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 291(1–2), 11–39. https://doi.org/10.1016/j.pala....
 
111.
Scott, A.C., Glasspool, I.J., 2005. Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology 33(7), 589–592. https://doi.org/10.1130/G21474....
 
112.
Scott, A.C., Sparks, R.S.J., Bull, I.D., Knicker, H., Evershed, R.P., 2008. Temperature proxy data and their significance for the understanding of pyroclastic density currents. Geology 36(2), 143–146. https://doi.org/10.1130/G24439....
 
113.
Shah, D.U., Reynolds, T.P., Ramage, M.H., 2017. The strength of plants: theory and experimental methods to measure the mechanical properties of stems. Journal of Experimental Botany 68(16), 4497–4516. https://doi.org/10.1093/jxb/er....
 
114.
Shunn, K.C., Gee, C.T., 2023. Cross-sectioning to the core of conifers: pith anatomy of living Araucariaceae and Podocarpaceae, with comparisons to fossil pith. IAWA Journal 45, 1–26. https://doi.org/10.1163/229419....
 
115.
Sigurdsson, H., Cashdollar, S., Sparks, S.R., 1982. The eruption of Vesuvius in AD 79: reconstruction from historical and volcanological evidence. American Journal of Archaeology 86(1), 39–51.
 
116.
Still, C.J., Foster, P.N., Schneider, S.H., 1999. Simulating the effects of climate change on tropical montane cloud forests. Nature 398(6728), 608–610. https://doi.org/10.1038/19293.
 
117.
Sutherland, J.I., 2003. Miocene petrified wood and associated borings and termite faecal pellets from Hukatere Peninsula, Kaipara Harbour, North Auckland, New Zealand. Journal of the Royal Society of New Zealand 33(1), 395–414. https://doi.org/10.1080/030142....
 
118.
Swain, A.M., 1973. A History of Fire and Vegetation in Northeastern Minnesota as Recorded in Lake Sediments1. Quaternary Research 3(3), 383–396. https://doi.org/10.1016/0033-5....
 
119.
Tamay, J., Galindo-Zaldivar, J., Soto, J., Gil, A.J., 2021. GNSS Constraints to Active Tectonic Deformations of the South American Continental Margin in Ecuador. Sensors 21(12), 4003. https://doi.org/10.3390/s21124....
 
120.
Taylor, E.L., Taylor, T.N., Krings, M., 2009. Paleobotany: the biology and evolution of fossil plants. Academic Press.
 
121.
Titiz, B., Sanford Jr, R.L., 2007. Soil charcoal in old-growth rain forests from sea level to the continental divide. Biotropica 39(6), 673–682. https://doi.org/10.1111/j.1744....
 
122.
Toulkeridis, T., Zach, I. 2017. Wind directions of volcanic ash-charged clouds in Ecuador – implications for the public and flight safety. Geomatics, Natural Hazards and Risk 8(2), 242–256. https://doi.org/10.1080/194757....
 
123.
Toulkeridis, T., Clauer, N., Kröner, A., 1996. Chemical variations in clay minerals of the Archaean Barberton greenstone belt (South Africa). Precambrian Research 79(3–4), 195–207. https://doi.org/10.1016/S0301-....
 
124.
Toulkeridis, T., Arroyo, C.R., Cruz D’Howitt, M., Debut, A., Vaca, A.V., Cumbal, L., Mato, F., Aguilera, E., 2015. Evaluation of the initial stage of the reactivated Cotopaxi volcano – analysis of the first ejected fine-grained material. Natural Hazards and Earth System Sciences Discussions 3(11), 6947–6976. https://doi.org/10.5194/nhessd....
 
125.
Toulkeridis, T., Tamayo, E., Simón-Baile, D., Merizalde-Mora, M.J., Reyes-Yunga, D.F., Viera-Torres, M., Heredia, M., 2020. Climate Change according to Ecuadorian academics – Perceptions versus facts. LA GRANJA. Revista de Ciencias de la Vida 31(1), 21–46.
 
126.
Toulkeridis, T., Seqqat, R., Arias, M.T., Salazar-Martinez, R., Ortiz-Prado, E., Chunga, S., Vizuete, K., Heredia, M., Debut, A., 2022. Volcanic Ash as a precursor for SARS-CoV-2 infection among susceptible populations in Ecuador: A satellite Imaging and excess mortality-based analysis. Disaster Medicine and Public Health Preparedness 16(6), 2499–2511. https://doi.org/10.1017/dmp.20....
 
127.
Trenkamp, R., Kellogg, J.N., Freymueller, J.T., Mora, H.P., 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences 15(2), 157–171. https://doi.org/10.1016/S0895-....
 
128.
Ulloa Ulloa, C., Acevedo-Rodríguez, P., Beck, S., Belgrano, M.J., Bernal, R., Berry, P.E., Brako, L., Celis, M., Davidse, G., Forzza, F.C., Gradstein, S.R., Hokche, O., León, B., León-Yánez, S., Magill, R.E., Neill, D.A., Nee, M., Raven, P.H., Stimmel, H., Strong, M.T., Villaseñor, J.L., Zarucchi, J.L., Zuloaga, F.O., Jørgensen, P.M., 2017. An integrated assessment of the vascular plant species of the Americas. Science 358(6370), 1614–1617. https://doi.org/10.1126/scienc....
 
129.
Vaca, A.V., Arroyo, C.R., Debut, A., Toulkeridis, T., Cumbal, L., Mato, F., D’Howitt, M.C., Aguilera, E., 2016. Characterization of fine-grained material ejected by the Cotopaxi volcano employing X-ray diffraction and electron diffraction scattering techniques. Biology and Medicine 8(3), 1.
 
130.
Van’t Veer, R., Islebe, G.A., Hooghiemstra, H., 2000. Climatic change during the Younger Dryas chron in northern South America: a test of the evidence. Quaternary Science Reviews 19(17–18), 1821–1835. http://dx.doi.org/10.1016/S027....
 
131.
Veal, R., 2012. From Context to Economy: charcoal and its unique potential in archaeological interpretation: a case study from Pompeii. In: Schrüfer-Kolb, I.E. (ed.), More than just numbers? The role of science in Roman archaeology. ournal of Roman Archaeology Supplement 91, 19–52. Portsmouth.
 
132.
Veal, R., 2014. Pompeii and its Hinterland connection: The fuel consumption of the house of the vestals (c. Third Century BC to AD 79). European Journal of Archaeology 17(1), 27–44.
 
133.
Villa, P., 1982. Conjoinable pieces and site formation processes. American Antiquity 47(2), 276–290.
 
134.
Villamarín-Cortez, S., Mena-Valenzuela, P., (ed.), 2009. Ecosistemas del Distrito Metropolitano de Quito DMQ. Es una Serie de Publicaciones del Museo Ecuatoriano de Ciencias Naturales (MECN)- Fondo Ambiental del Municipio del Distrito Metropolitano de Quito. Quito-Ecuador.
 
135.
Vogel, J.S., Cornell, W., Nelson, D.E., Southon, J.R., 1990. Vesuvius/Avellino, one possible source of seventeenth century BC climatic disturbances. Nature 344, 534–537. https://doi.org/10.1038/344534....
 
136.
Wan, M., Yang, W., Liu, L., Wang, J., 2016. Plant-arthropod and plant-fungus interactions in late Permian gymnospermous woods from the Bogda Mountains, Xinjiang, northwestern China. Review of Palaeobotany and Palynology 235, 120–128. https://doi.org/10.1016/j.revp....
 
137.
Wheeler, E.A., Baas, P., 1991. A survey of the fossil record for Dicotiledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Journal 12(3), 275–318. https://doi.org/10.1163/229419....
 
138.
Wild, E.M., Gauss, W., Forstenpointner, G., Lindblom, M., Smetana, R., Steier, P., Thanheiser, U., Weninger, F., 2010. 14C dating of the Early to Late Bronze Age stratigraphic sequence of Aegina Kolonna, Greece. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(7–8), 1013–1021. https://doi.org/10.1016/j.nimb....
 
139.
Yasuhara, M., Tittensor, D.P., Hillebrand, H., Worm, B., 2017. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biological Reviews 92(1), 199–215. https://doi.org/10.1111/brv.12....
 
140.
Zeidler, J., 1994. Archaeological Testing in the Middle Jama Valley. In: Zeidler, J., Pearsall, D. (eds), Regional Archaeology in Northern Manabí, Ecuador, Volume 1: Environment, Cultural Chronology, and Prehistoric Subsistence in the Jama River Valley. University of Pittsburgh Memoirs in Latin American Archaeology 8, pp. 71–98. Ediciones Libri Mundi.
 
141.
Zeidler, J.A., 2016. Modeling cultural responses to volcanic disaster in the ancient Jama–Coaque tradition, coastal Ecuador: A case study in cultural collapse and social resilience. Quaternary International 394, 79–97. https://doi.org/10.1016/j.quai....
 
142.
Zeidler, J.A., Ubelaker, D.H., 2021. De Las Vegas A Valdivia: evidencia bioarqueológica de una transición demográfica neolítica (Tdn) en el sitio Real Alto, costa de Ecuador. In: Jadán Veriñez, M.J. (ed.). Valdivia, una sociedad neolítica: nuevos aportes a su conocimiento. UTM-Unidad de Cooperación Universitaria.
 
143.
Zemke, V., Haag, V., Koch, G., 2020. Wood identification of charcoal with 3D-reflected light microscopy. IAWA Journal 41(4), 478–489. https://doi.org/10.1163/229419....
 
144.
Zhang, F.Q., Chen, H.L., Batt, G.E., Li, Z.X., Yang, S.F., 2014. Early Cretaceous Aptian charcoal from Xinchang petrified wood national geopark of Zhejiang province, eastern south Chinaaptian charcoal from Zhejiang province south China. Palaios 29(7), 325–337. http://dx.doi.org/10.2110/palo....
 
145.
Zhang, J.F., Wang, X.Q., Qiu, W.L., Shelach, G., Hu, G., Fu, X., Zhuang, M.G., Zhou, L.P., 2011. The paleolithic site of Longwangchan in the middle Yellow River, China: chronology, paleoenvironment and implications. Journal of Archaeological Science 38(7), 1537–1550. https://doi.org/10.1016/j.jas.....
 
146.
Zhu, Q., 2014. Coal sampling and analysis standards. IEA Clean Coal Centre, London, United Kingdom, 143.
 
147.
Zubova, A., Ras, E., 2018. Dental evidences to the problem of the Valdivia culture (Ecuador) origin: First results. PAEASNT (24), 256–259. https://doi.org/10.17746/2658-....
 
eISSN:2082-0259
ISSN:0001-6594
Journals System - logo
Scroll to top