ORIGINAL ARTICLE
Woody charcoal with traces of pre-charring decay from the Late Oligocene (Chattian) of Norken (Westerwald, Rhineland-Palatinate, W Germany)
 
More details
Hide details
1
Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
2
Programa de Pós-Graduação em Ambiente e Desenvolvimento, Universidade do Vale do Taquari – UNIVATES (PPGAD/UNIVATES), Lajeado, Rio Grande do Sul, Brazil
Submission date: 2019-10-02
Online publication date: 2020-06-29
Publication date: 2020-06-29
 
Acta Palaeobotanica 2020; 60(1): 43–50
 
KEYWORDS
ABSTRACT
A variety of traces of pre-charring decay are described from coniferous charcoals from the Norken locality, stratigraphically positioned within the Breitscheid Formation (Late Oligocene, Chattian) of the Westerwald area (Rhineland-Palatinate; W Germany). The traces include three-dimensionally preserved as well as collapsed fungal hyphae, collapsed filamentous structures (maybe related to ascomycetes), so-called shot-like holes of different diameters in cell walls of tracheids, as well as crater-like structures on the surface of tracheid walls. The latter occur on tracheids with bordered pits, in the direct vicinity of charred phloem (so far only rarely reported from pre-Quaternary charcoal). These observations, together with evidence that some of the charcoal fragments originated from wood that dried out prior to charring, point to a surface fire as the most likely source of the charcoal, although it cannot totally be ruled out that (partly) dead but still standing trees were affected during a crown fire. The data from the Late Oligocene of Norken provide further evidence that pre-Quaternary charcoal can be used as an additional, so far largely underutilized source for additional information about plant– microorganism interactions in deep time.
 
REFERENCES (38)
1.
Ascough, P.L., Bird, M.I., Scott, A.C., Collinson, M.E., Weiner, S., Cohen-Ofri, I., Snape, C.E., Le Manquais, K., 2010. Charcoal reflectance: implications for structural characterization. Journal of Archaeological Science 37, 1590–1599. https://doi.org/10.1016/j.jas.....
 
2.
Baumann, H., 1993. Geologie des Westerwaldes in Schwerpunkten. In: Wegener, H.-H. (ed.), Der Westerwald. Kreis Altenkirchen und Westerwaldkreis, Stuttgart. [Theiss Verlag], 26, 13–21.
 
3.
Beaumont, E., 1985. Industrial Charcoal Making. FAO Forestry Paper, vol. 63. Food and Agricultural Organization of the United Nations, Rome. http://www.fao.org/docrep/X555....
 
4.
Daniel, G., 2003. 4. Microview of wood under degradation by bacteria and fungi. In: Godell, B. et al. (eds), Wood deterioration and preservation. ACS Symposium Series 2003, 34–72. https://doi.org/10.1021/bk-200....
 
5.
Degani-Schmidt, I., Guerra-Sommer, M., de Oliveira Mendonça, J., Mendonça Filho, J.G., Jasper, A., Cazzulo-Klepzig, M., Iannuzzi, R., 2015. Charcoalified logs as evidence of hypautochthonous/autochthonous wildfire events in a peat-forming environment from the Permian of southern Paraná Basin (Brazil). International Journal of Coal Geology 146, 55–67. https://doi.org/10.1016/j.coal....
 
6.
El Atfy, H., Havlik, P., Krüger, P.S., Manfroi, J., Jasper, A., Uhl, D., 2019. Pre-Quaternary wood decay ‘caught in the act’ by fire – Examples of plant– microbe interactions preserved in charcoal from clastic sediments. Historical Biology 31, 952–961. https://doi.org/10.1080/089129....
 
7.
Gerards, T., Damblon, F., Wauthoz, B., Gerrienne, P., 2007. Comparison of cross-field pitting in fresh, dried and charcoalified softwoods. Iawa Journal 28, 49–60. https://doi.org/10.1163/229419....
 
8.
Guo, Y., Bustin, R.M., 1998. FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. International Journal of Coal Geology 37, 29–53. https://doi.org/10.1016/s0166-....
 
9.
Hiscox, J., O’Leary, J., Boddy, L., 2018. Fungus wars: basidiomycete battles in wood decay. Studies in Mycology 89, 117–124. https://doi.org/10.1016/j.simy....
 
10.
Hower, J.C., O’Keefe, J.M.K., Eble, C.F., Raymond, A., Valentim, B., Volk, T.J., Richardson, A.R., Satterwhite, A.B., Hatch, R.S., Stucker, J.D., Watt M.A., 2011. Notes on the origin of inertinite macerals in coal: evidence for fungal and arthropod transformations of degraded macerals. International Journal of Coal Geology 86, 231–240. https://doi.org/10.1016/j.coal....
 
11.
Hower, J.C., Hoffman, G.K., Garrison, T.M., 2013a. Macrinite and funginite forms in cretaceous menefee formation anthracite, Cerrillos coalfield, New Mexico. International Journal of Coal Geology 114, 54–59. https://doi.org/10.1016/j.coal....
 
12.
Hower, J.C., Misz-Keenan, M., O’Keefe, J.M.K., Mastalerz, M., Eble, C.F., Garrison, M., Johnston, M.N., Stucker, J.D., 2013b. Macrinite forms in Pennsylvanian coals. International Journal of Coal Geology 116–117, 172–181. https://doi.org/10.1016/j.coal....
 
13.
Hower, J.C., O’Keefe, J.M.K., Wagner, N.J., Dai, S., Wang, X., Xue, W., 2013c. An investigation of Wulantuga coal (Cretaceous, Inner Mongolia) macerals: paleopathology of faunal and fungal invasions into wood and the recognizable clues for their activity. International Journal of Coal Geology 114, 44–53. https://doi.org/10.1016/j.coal....
 
14.
Jasper, A., Agnihotri, D., Tewari, R., Spiekermann, R., Pires, E.F., da Rosa, Á.A.S., Uhl, D., 2017. Fires in the mire: repeated fire events in Early Permian ‘peat forming’ vegetation of India. Geological Journal 52, 955–569. https://doi.org/10.1002/gj.286....
 
15.
Jones, T.P., 1993. New morphological and chemical evidence for a wildfire origin for fusain from comparisons with modern charcoal. Special Papers in Palaeontology 49, 113–123.
 
16.
Köhler, J., Uhl D., 2014. Die Blatt- und Karpoflora der oberoligozänen Fossillagerstätte Enspel (Westerwald, Rheinland-Pfalz, W-Deutschland). Mainzer naturwissenschaftliches Archiv, Beih. 35, 1–87.
 
17.
Krüger, P., Paudayal, K., Wuttke, M., Uhl, D., 2017. Ein Beitrag zur oberoligozänen Makroflora von Norken (Westerwald, Rheinland-Pfalz, W-Deutschland). Mainzer naturwissenschaftliches Archiv 54, 65–81.
 
18.
Kubik, R., Uhl, D., Marynowski, L., 2015. Evidence of wildfires during deposition of the Upper Silesian Keuper succession. Annales Societatis Geologorum Poloniae 85, 685–696. https://doi.org/10.14241/asgp.....
 
19.
Moskal-del Hoyo, M., Wachowiak, M., Blanchette, R.A., 2010. Preservation of fungi in archaeological charcoal. Journal of Archaeological Science 37, 2106–2116. https://doi.org/10.1016/j.jas.....
 
20.
Müller, P., 1997. Fossillagerstätten im Westerwald. Westerburger Hefte 25, 54 pp.
 
21.
Poschmann, M., Schindler, T., Uhl, D., 2010. Fossillagerstätte Enspel – a short review of current knowledge, the fossil association, and a bibliography. In: Wuttke, M., Uhl, D., Schindler, T. (eds), Fossil- Lagerstätte Enspel – exceptional preservation in an Upper Oligocene maar. Palaeobiodiversity and Palaeoenvironments 90, 3–20.
 
22.
Potonié, R., 1929. Spuren von Wald- und Moorbränden in Vergangenheit und Gegenwart. Jahrbuch des Preussischen geologischen Landesanstalt 49 (for 1928), 1184–1203.
 
23.
Schäfer, P., Schindler, T., Hottenrott, M., Wuttke, M., 2011. 5.10. Westerwald. In: Deutsche Stratigraphische Kommission (eds), Stratigraphie von Deutschland IX – Tertiär, Teil 1: Oberrheingraben mit angrenzenden Teilbecken und Mittelgebirgen. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 75, 416–435.
 
24.
Schindler, T., Wuttke, M., 2010. Geology and limnology of the Enspel Formation (Chattian, Oligocene; Westerwald, Germany). In: Wuttke, M., Uhl, D., Schindler, T. (eds), Fossil-Lagerstätte Enspel – exceptional preservation in an Upper Oligocene maar. Palaeobiodiversity and Palaeoenvironments 90, 21–27.
 
25.
Schindler, T., Wuttke, M., 2015. A revised sedimentological model for the Late Oligocene Lake Enspel (Enspel Formation, Westerwald Mountains, Germany). Palaeobiodiversity and Palaeoenvironments 95, 5–16. https://doi.org/10.1007/s12549....
 
26.
Schwarze, F.W.M.R., 2007. Wood decay under the microscope. Fungal Biology Reviews 21, 133–170. https://doi.org/10.1016/j.fbr.....
 
27.
Schweingruber, F.H., 1990. Mikroskopische Holzanatomie – Formenspektren mitteleuropäischer Stammund Zweighölzer zur Bestimmung von rezentem und subfossilem Material. 3rd ed. Birmensdorf: Eidg Forschungsanstalt für Wald, Schnee und Landschaft. 226 pp.
 
28.
Schweingruber, F.H., Börner, A., Schulze, E.-D., 2006. Atlas of woody plant stems Evolution, structure, and environmental modifications. Berlin: Springer- Verlag. 229 pp.
 
29.
Scott, A.C., 2000. The pre-quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology 164, 281–329. https://doi.org/10.1016/s0031-....
 
30.
Scott, A.C., 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 291: 11–39. https://doi.org/10.1016/j.pala....
 
31.
Scott, A.C., Bowman, D.M.J.S., Bond, W.J., Pyne, S.J., Alexander, M.E., 2014. Fire on Earth: and introduction. Wiley Blackwell. 413 pp.
 
32.
Singh, A.P., Kim, Y.S., Singh, T., 2016. Bacterial degradation of wood. In: Kim, Y.S., Funada, R., Singh, A.P. (eds), Secondary xylem biology. Academic Press, Cambridge, pp. 169–190. https://doi.org/10.1016/b978-0....
 
33.
Steckhan, W., 1973. Die Braunkohlen des Westerwaldes. Hessisches Lagerstättenarchiv 6, 1–114.
 
34.
Uhl, D., Poschmann, M., 2018. Groenlandia pescheri sp. nov. (Potamogetonaceae) from the Late Oligocene Fossil-Lagerstätte Enspel (Westerwald, Germany). Acta Palaeobotanica 58, 61–72. https://doi.org/10.2478/acpa-2....
 
35.
Uhl, D., Abu Hamad, A.M.B., Kerp, H., Bandel, K., 2007. Evidence for palaeowildfire in the Late Permian palaeotropics – charcoalified wood from the Um Irna Formation of Jordan. Review of Palaeobotany and Palynology 144, 221–230. https://doi.org/10.1016/j.revp....
 
36.
Uhl, D., Schindler, T., Wuttke, M., 2011. Paläoökologische Untersuchungen im Oberoligozän von Norken (Westerwald, Rheinland-Pfalz, W-Deutschland) – Erste Ergebnisse. Mainzer naturwissenschaftliches Archiv 48: 115–127.
 
37.
Uhl, D., Krüger, P.S, Wuttke, M., 2018. Epidermal anatomy of Glyptostrobus europaeus (Brongniart) Unger from the Late Oligocene of the Westerwald (Rhineland-Palatinate, W-Germany). Fossil Imprint 75, 334–340. https://doi.org/10.2478/if-201....
 
38.
Uhl, D., Jasper, A., Solorzano Kraemer, M.M., Wilde, V., 2019. Charred biota from an Early Cretaceous fissure fill in the Sauerland (Rüthen- Kallenhardt, Northrhine-Westphalia, W-Germany) and their palaeoenvironmental implications. Neues Jahrbuch für Geologie und Paläontologie, Abh. 293(1), 83–105. https://doi.org/10.1127/njgpa/....
 
 
CITATIONS (2):
1.
Palaeobotanical and biomarker evidence for Early Permian (Artinskian) wildfire in the Rajmahal Basin, India
Srikanta Murthy, Vinod Mendhe, Dieter Uhl, Runcie Mathews, Vivek Mishra, Saurabh Gautam
Journal of Palaeogeography
 
2.
Wildfire during deposition of the “Illinger Flözzone” (Heusweiler-Formation, “Stephanian B”, Kasimovian–Ghzelian) in the Saar-Nahe Basin (SW-Germany)
Dieter Uhl, André Jasper
Palaeobiodiversity and Palaeoenvironments
 
eISSN:2082-0259
ISSN:0001-6594