ORIGINAL ARTICLE
Representation of the Hyrcanian forest (northern Iran) in modern pollen rain revealed by palynological and DNA-metabarcoding data
 
More details
Hide details
1
University of Göttingen, Department of Palynology and Climate Dynamics, Albrecht-von-Haller Institute for Plant Sciences, Untere Karspüle 2, 37073 Göttingen, Germany
 
2
University of Tehran, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, Division of Plant Biotechnology, Alborz, Iran
 
3
Lifeprint GmbH, Industriestrasse 12, 89257, Illertissen, Germany
 
4
University of Tehran, Department of Plant Science, Center of Excellence in Phylogeny, School of Biology, College of Science, Tehran, Iran
 
5
Quality Service International GmbH, Department of Product Management, Flughafendamm 9a, 28199, Bremen, Germany
 
 
Submission date: 2022-09-03
 
 
Acceptance date: 2023-03-13
 
 
Online publication date: 2023-06-30
 
 
Publication date: 2023-06-30
 
 
Acta Palaeobotanica 2023; 63(1): 100-117
 
HIGHLIGHTS
  • The modern pollen rain in two different altitudinal transects of the Western Hyrcanian forest.
  • DNA metabarcoding, besides pollen counting, are valuable method in identifying the main plant taxa of the area.
  • Two different markers, ITS2 and rbcL used in this study, and the identified species with the rbcL were slightly
  • higher in both transects.
KEYWORDS
ABSTRACT
We studied the modern pollen rain in two different landscapes from Hyrcanian lowland forests up to the slopes of the Alborz Mountains in Gilan province for the first time. Pollen traps were installed for one year and moss samples were collected along two altitudinal transects from 100 to 1800 m and from 100 to 2300 m elevations. The results of pollen counting and environmental DNA barcoding (metabarcoding) of the collected pollen and moss samples were compared from 32 locations. In total, 81 vascular plant species from 36 families were identified by metabarcoding, and 68 taxa belonging to 39 families were identified by pollen counting. The pollen counting results reflect mainly wind-pollinated families, such as Betulaceae and Fagaceae while results from metabarcoding of the rbcL and ITS2 loci were more in line with the vegetation around the pollen traps and the moss samples. Furthermore, this study showed that the rbcL region is able to identify more taxa than the ITS2 region, while applying both markers provides higher confidence. Also using both metabarcoding and pollen data provides a better local and regional vegetation representation.
 
REFERENCES (53)
1.
Akhani, H., Djamali, M., Ghorbanalizadeh, A., Ramezani, E., 2010. Plant biodiversity of Hyrcanian relict forests, N Iran: an overview of the flora, vegetation, palaeoecology and conservation. Pakistan Journal of Botany 42, 231–258.
 
2.
Aziz, A.N., Sauve, R.J., 2008. Genetic mapping of Echinacea purpurea via individual pollen DNA fingerprinting. Molecular Breeding 21, 227–232. https://doi.org/10.1007/s11032....
 
3.
Baksay, S., Pornon, A., Burrus, M., Mariette, J., Andalo, C., Escaravage, N., 2020. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Scientific Reports 10, 4202. https://doi.org/10.1038/s41598....
 
4.
Bell, K.L., Fowler, J., Burgess, K.S., Dobbs, E.K., Gruenewald, D., Lawley, B., Connor, M., Brosi, B.J., 2017. Applying pollen DNA metabarcoding to the study of plant–pollinator interactions. Applications in Plant Sciences 5, 1600124. https://doi.org/10.3732/apps.1....
 
5.
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W., 2009. GenBank. Nucleic Acids Research 37, 26–31. https://doi.org/10.1093/nar/gk....
 
6.
Beug, H.J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Friedrich Pfeil, Munich.
 
7.
Browicz, K., 1989. Chorology of the Euxinian and Hyrcanian element in the woody flora of Asia. Plant Systematics and Evolution 162, 305–314.
 
8.
Callahan, B.J., Sankaran, K., Fukuyama, J.A., McMurdie, P.J., Holmes, S.P., 2016. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 5. https://doi.org/10.12688/f1000....
 
9.
Campbell, B.C., al Kouba, J., Timbrell, V., Noor, M.J., Massel, K., Gilding, E.K., Angel, N., Kemish, B., Hugenholtz, P., Godwin, I.D., Davies, J.M., 2020. Tracking seasonal changes in diversity of pollen allergen exposure: Targeted metabarcoding of a subtropical aerobiome. Science of the Total Environment 747, 141189. https://doi.org/10.1016/j.scit....
 
10.
CBOL Plant Working Group, 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 4, 12794-7.
 
11.
Chen, S., Vargas, Y.N., 2010. Improving the performance of particle swarms through dimension reductions – A case study with locust swarms. In: IEEE Congress on Evolutionary Computation. IEEE, 1–8.
 
12.
Coissac, E., Riaz, T., Puillandre, N., 2012. Bioinformatic challenges for DNA metabarcoding of plants and animals. Molecular Ecology 21, 1834–1847. https://doi.org/10.1111/j.1365....
 
13.
Creer, S., Deiner, K., Frey, S., Porazinska, D., Taberlet, P., Thomas, W.K., Potter, C., Bik, H.M., 2016. The ecologist’s field guide to sequence-based identification of biodiversity. Methods in Ecology and Evolution 7, 1008–1018. https://doi.org/10.1111/2041-2....
 
14.
Djamali, M., de Beaulieu, J.L., Campagne, P., Andrieu-Ponel, V., Ponel, P., Leroy, SAG., Akhani, H., 2009. Modern pollen rain-vegetation relationships along a forest-steppe transect in the Golestan National Park, NE Iran. Re-view of Palaeobotany and Palynology 153, 272–281. https://doi.org/10.1016/j.revp....
 
15.
Erickson, D.L., Reed, E., Ramachandran, P., Bourg, N.A., McShea, W.J., Ottesen, A., 2017. Reconstructing a her-bivore’s diet using a novel rbcL DNA mini-barcode for plants. AoB Plants 9(3), plx015. https://doi.org/10.1093/aobpla....
 
16.
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. John Wiley and Sons.
 
17.
Fazekas, A.J., Burgess, K.S., Kesanakurti, P.R., Graham, S.W., Newmaster, S.G., Husband, B.C., Percy, D.M., Hajibabaei, M., Barrett, S.C., 2008. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One 3(7), 2802. https://doi.org/10.1371/journa....
 
18.
Fazekas, A.J., Kesanakurti, P.R., Burgess, K.S., Percy, D.M., Graham, S.W., Barrett, S.C., Newmaster, S.G., Hajibabaei, M., Husband, B.C., 2009. Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Molecular Ecology Resources 9, 130–139. https://doi.org/10.1111/j.1755....
 
19.
Fujiwara, M.T., Hashimoto, H., Kazama, Y., Hirano, T., Yoshioka, Y., Aoki, S., Sato, N., Itoh, R.D., Abe, T., 2010. Dynamic morphologies of pollen plastids visualised by vegetative-specific FtsZ1-GFP in Arabidopsis thaliana. Protoplasma 242, 19–33. https://doi.org/10.1007/s00709....
 
20.
Galimberti, A., de Mattia, F., Bruni, I., Scaccabarozzi, D., Sandionigi, A., Barbuto, M., Casiraghi, M., Labra, M., 2014. A DNA barcoding approach to characterize pollen collected by honeybees. PLoS One 9(10), 109363. https://doi.org/10.1371/journa....
 
21.
Ghorbanalizadeh, A., Akhani, H., 2021. Plant diversity of Hyrcanian relict forests: An annotated checklist, chorol-ogy and threat categories of endemic and near endemic vascular plant species. Plant Diversity 44(1), 39–69. https://doi.org/10.1016/j.pld.....
 
22.
Gomes, B.T., Correa, A., Brunelli, E.S., Bitencourt, A.L., 2021. Modern pollen rain analysis from Itapuã State Park (Parque Estadual Itapuã), RS, Brazil. Anais da Academia Brasileira de Ciências 93(1), e20200392. https://doi.org/10.1590/0001-3....
 
23.
Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the methods of incremental sum of squares. Computers & Geosciences 13, 13–35. https://doi.org/10.1016/0098-3....
 
24.
Hawkins, J., de Vere, N., Griffith, A., Ford, C.R., Allainguillaume, J., Hegarty, M.J., Baillie, L., Adams-Groom, B., 2015. Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS One 10(8), 0134735. https://doi.org/10.1371/journa....
 
25.
Halbritter, H., Ulrich, S., Grímsson, F., Weber, M., Zetter, R., Hesse, M., Buchner, R., Svojtka, M., Frosch-Radivo, A., 2018. Illustrated pollen terminology. Springer.
 
26.
Hollingsworth, P.M., Graham, S.W., Little, D.P., 2011. Choosing and using a plant DNA barcode. PLoS One 6(5), e19254. https://doi.org/10.1371/journa....
 
27.
Jantz, N., Homeier, J., León-Yánez, S., Moscoso, A., Behling, H., 2013. Trapping pollen in the tropics – Comparing modern pollen rain spectra of different pollen traps and surface samples across Andean vegetation zones. Review of Palaeobotany and Palynology 193, 57–69. https://doi.org/10.1016/j.revp....
 
28.
Jarman, S.N., Berry, O., Bunce, M., 2018. The value of environmental DNA biobanking for long-term biomonitoring. Nature Ecology and Evolution 2, 1192–1193. https://doi.org/10.1038/s41559....
 
29.
Keck, F., Rimet, F., Vasselon, V., Bouchez, A., 2019. GitHub - fkeck/DADA2_diatoms_ pipeline: DADA2 Custom Pipeline for rbcL Diatoms. https://github.com/fkeck/DADA2....
 
30.
Keller, A., Danner, N., Grimmer, G., Ankenbrand, MVD., Von Der Ohe, K., Von Der Ohe, W., Rost, S., Härtel, S., Steffan-Dewenter, I., 2015. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biology 17, 558–566. https://doi.org/10.1111/plb.12....
 
31.
Kraaijeveld, K., de Weger, L.A., Ventayol García, M., Buermans, H., Frank, J., Hiemstra, P.S., Den Dunnen, J.T., 2015. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Molecular Ecology Resources 15, 8–16. https://doi.org/10.1111/1755-0....
 
32.
Landsmeer, S.H., Hendriks, E.A., de Weger, L., Reiber, J.H., Stoel, BC., 2009. Detection of pollen grains in multi-focal optical microscopy images of air samples. Microscopy Research and Technique 72, 424–430. https://doi.org/10.1002/jemt.2....
 
33.
Leroy, S.A.G., Roiron, P., 1996. Latest Pliocene pollen and leaf floras from Bernasso palaeolake (Escandorgue Massif, Hérault, France). Review of Palaeobotany and Palynology 94, 295–328. https://doi.org/10.1016/S0034-....
 
34.
Longhi, S., Cristofori, A., Gatto, P., Cristofolini, F., Grando, M.S., Gottardini, E., 2009. Biomolecular identification of allergenic pollen: A new perspective for aerobiological monitoring? Annals of Allergy, Asthma and Immunology 103, 508–514. https://doi.org/10.1016/S1081-....
 
35.
Matsuki, Y., Isagi, Y., Suyama, Y., 2007. The determination of multiple microsatellite genotypes and DNA se-quences from a single pollen grain: Technical article. Molecular Ecology Notes 7, 194–198. https://doi.org/10.1111/j.1471....
 
36.
Molavi-Arabshahi, M., Arpe, K., Leroy, S.A.G., 2016. Precipitation and temperature of the Southwest Caspian Sea during the last 55 years, their trends and teleconnections with large-scale atmospheric phenomena. Interna-tional Journal of Climatology 36, 2156–2172. https://doi.org/10.1002/joc.44....
 
37.
Naqinezhad, A., Zare-Maivan, H., Gholizadeh, H., 2015. A floristic survey of the Hyrcanian forests in Northern Iran, using two lowland-mountain transects. Journal of Forestry Research 26(1), 187–199. https://doi.org/10.1007/s11676....
 
38.
Piñol, J., Senar, M.A., Symondson, W.O.C., 2019. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Molecular Ecology 28, 407–419. https://doi.org/10.1111/mec.14....
 
39.
Polling, M., Sin, M., de Weger, L.A., Speksnijder, A.G., Koenders, M.J., de Boer, H., Gravendeel, B., 2022. DNA metabarcoding using nrITS2 provides highly qualitative and quantitative results for airborne pollen monitoring. Science of the Total Environment 806, 150468. https://doi.org/10.1016/j.scit....
 
40.
Pornon, A., Andalo, C., Burrus, M., Escaravage, N., 2017. DNA metabarcoding data unveils invisible pollination networks. Scientific Reports 7(1), 1–11. https://doi.org/10.1038/s41598....
 
41.
Ramezani, E., Marvie Mohadjer, M.R., Knapp, H.D., Ahmadi, H., Joosten H., 2008. The late-Holocene vegetation history of the Central Caspian (Hyrcanian) forests of northern Iran. Holocene 18, 307–321. https://doi.org/10.1177/095968....
 
42.
Ramezani, E., Marvie Mohadjer, M.R., Knapp, H.D., Theuerkauf, M., Manthey, M., Joosten, H., 2013. Pol-len-vegetation relationships in the central Caspian (Hyrcanian) forests of northern Iran. Review of Palaeobotany and Palynology 189, 38–49. https://doi.org/10.1016/j.revp....
 
43.
Rechinger, K.H., 1963. Flora Iranica, Flora des iranischen Hochlandes und der umrahmenden Gebirge. Graz/Wien: Akademische Druck- u. Verlagsanstalt, und Naturhistorisches Museum Wien.
 
44.
Richardson, R.T., Lin, C., Quijia, J.O., Riusech, N.S., Goodell, K., Johnson, R.M., 2015a. Rank-based characteriza-tion of pollen assemblages collected by honey bees using a multi-locus metabarcoding approach. Applications in Plant Sciences 3, 1500043. https://doi.org/10.3732/apps.1....
 
45.
Richardson, R.T., Lin, C-H., Sponsler, D.B., Quijia, J.O., Goodell, K., Johnson, R.M., 2015b. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Applications in Plant Sciences 3, 1400066. https://doi.org/10.3732/apps.1....
 
46.
Rittenour, W.R., Hamilton, R.G., Beezhold, D.H., Green, B.J., 2012. Immunologic, spectrophotometric and nucleic acid based methods for the detection and quantification of airborne pollen. Journal of Immunological Methods 383, 47–53. https://doi.org/10.1016/j.jim.....
 
47.
Sabeti, H., 1994. Forest, trees and bushes of Iran. Ministry of Agriculture and Natural Resources.
 
48.
Sakamoto, W., Miyagishima, S., Jarvis, P., 2008. Chloroplast Biogenesis: Control of Plastid Development, Protein Import, Division and Inheritance. The Arabidopsis Book 6, 0110. https://doi.org/10.1199/tab.01....
 
49.
Sickel, W., Ankenbrand, M.J., Grimmer, G., Holzschuh, A., Härtel, S., Lanzen, J., Steffan-Dewenter, I., Keller, A., 2015. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecology 15, 1–9. https://doi.org/10.1186/s12898....
 
50.
Taberlet, P., Coissac, E., Hajibabaei, M., Rieseberg, L.H., 2012a. Environmental DNA. Molecular Ecology 21, 1789–1793. https://doi.org/10.1111/j.1365....
 
51.
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., Willerslev, E., 2012b. Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology 21(8), 2045–2050. https://doi.org/10.1111/j.1365....
 
52.
White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (eds), PCR Protocols: A Guide to Methods and Applications, Academic Press, New York, pp. 315–322. http://dx.doi.org/10.1016/B978....
 
53.
Willerslev, E., Hansen, N.J., Binladen, J., Brand, T.B., Gilbert, M.T.P., Shapiro, B., Bunce, M., Wiuf, C., Gilichinsky, D.A., Cooper, A., 2003. Diverse Plant and Animal Genetic Records from Holocene and Pleistocene Sediments. Science 300, 791–795. https://doi.org/10.1126/scienc....
 
eISSN:2082-0259
ISSN:0001-6594
Journals System - logo
Scroll to top