Fern spore viability considered in relation to the duration of the Cretaceous-Paleogene (K-Pg) impact winter. A contribution to the discussion
 
 
More details
Hide details
1
Science Department, Hoehne Re-3 School District, Hoehne, Colorado, 81046, U.S.A.
 
 
Online publication date: 2019-06-18
 
 
Publication date: 2019-06-18
 
 
Acta Palaeobotanica 2019; 59(1): 19-25
 
KEYWORDS
ABSTRACT
The Cretaceous-Paleogene (K-Pg) boundary Chicxulub impact is supposed to have produced a nearly decade-long impact winter which resulted in a mass-extinction event among dicot angiosperms but which left pteridophytes comparatively unaffected. Dicot angiosperms subsequently recovered from the soil seed bank following an episode of global deforestation, although this recovery took centuries. Pteridophytes, on the other hand, are supposed to have recovered within months of the impact event, due to the characteristic, short-term viability of fern spores in the soil bank – an interpretation consistent with the assumption that the dominant fern spore at the K-Pg boundary fern spore spike, Cyathidites Couper, was produced by cyatheaceous foliage. At the K-Pg boundary section near Sugarite, New Mexico, however, Cyathidites spores are more likely to have been produced by schizaeaceous foliage, which produces spores capable of germinating after spending about a decade or more in the soil and which already commanded similar depositional settings in western North America during the Maastrichtian. Therefore, the protracted – millennial – timescale for fern dominance in the earliest Danian could be related to the unique ecology of schizaeaceous ferns that recovered from a persistent spore bank in a habitat that they already dominated, presumably by suppressing the colonization of angiosperms.
REFERENCES (72)
1.
Atkinson L.R. 1960. The Schizaeaceae: the gametophyte of Mohria. Phytomorphology, 10(1): 351–367.
 
2.
Balme B.E. 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Rev. Paleobot. Palynol., 87(2–4): 81–323.
 
3.
Ballesteros D., Estrelles E., Walters C. & Ibars A.M. 2012. Effects of temperature and desiccation on ex situ conservation of nongreen fern spores. Am. J. Bot., 99(4): 721–729.
 
4.
Bardeen C.G., Garcia R.R., Toon O.B. & Conley A.J. 2017. On transient climate change at the Cretaceous-Paleogene boundary due to atmospheric soot injections. Proc. Natl Acad. Sci., USA, 114(36): 7415–7424.
 
5.
Berry K. 2019. Linking fern foliage with spores at the K-Pg boundary section in the Sugarite coal zone, New Mexico, USA, while questioning the orthodoxy of the global pattern of plant succession across the K-Pg boundary. Neues Jahrb. Geol. Paläontol., 291(2): 159–169.
 
6.
Berry K., Lucas S.G. & Sealey P.L., in press, Revising palynostratigraphic concepts in the Raton Basin a half-century after R.H. Tschudy’s pioneering work. In: Ramos F.C., Zeigler K., & Zimmerer M. (eds), Fall Guidebook of the New Mexico Geological Society. New Mexico Geological Society, Socorro.
 
7.
Blonder B., Royer D.L., Johnson K.R., Mil­ler I. & Enquist B.J. 2014. Plant ecological shift across the Cretaceous-Paleogene boundary. PLoS ONE, 12(9): 1–7.
 
8.
Bolkhovitina N.A. 1961. Iskopaemye I sovremennye spory aemeystva shizeynykh (Fossil and recent spores in the Schizaeaceae). Trudy Geologicheskogo Instituta, Akademiya Nauk S.S.S.R., 40(1): 1–176.
 
9.
Bremer P. 2007. The colonization of a former sea-floor by ferns. Ph.D. Thesis, Wageningen University, Wageningen.
 
10.
Chandler M.E.J. 1955. The Schizaeaceae of the South of England in Early Tertiary times. Bull. Br. Mus. Nat. Hist., 2: 291–314.
 
11.
Chandler M.E.J. 1963. The lower Tertiary floras of southern England III: the flora of the Bournemouth beds; the Boscombe, and the Highcliff Sands. British Museum of Natural History, London.
 
12.
Chiou W-L & Farrar D.R. 1997. Antheridiogen production and response in Polypodiaceae species. Am. J. Bot., 84(5): 633–640.
 
13.
Clyde W.C., Ramezani J., Johnson K.R., Bowring S.A. & Jones M.M. 2016. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth Planet. Sci. Lett., 452(C): 272–280.
 
14.
Collinson M.E. 2001. Cainozoic ferns and their distribution. Brittonia, 53(2): 173–235.
 
15.
Collinson M.E. 2002. The ecology of Cainozoic ferns. Rev. Palaeobot. Palynol., 119(1–2): 51–68.
 
16.
de Groot G.A. & During H. 2013. Fern spore longevity in saline water: can sea bottom sediments maintain a viable spore bank? PLoS ONE, 8(11): 1–11.
 
17.
Ferriter A. 2001. Lygodium management plan for Florida: a report from the Florida Exotic Plant Council’s Lygodium Task Force: First Edition. Florida Exotic Pest Plant Council, Florida, USA.
 
18.
Field D.J., Bercovici A., Berv J.S., Dunn R., Fastovsky D.E., Lyson T.R., Vajda V. & Gauthier J.A. 2018. Early evolution of modern birds structured by global forest collapse at the End-Cretaceous mass extinction. Curr. Biol., 28(11): 1825–1831.
 
19.
Ford M.V. & Fay M.F. 1999. Spore-derived axenic cultures of ferns as a method of propagation. Methods Mol. Biol., 111: 159–168.
 
20.
Galeotti S., Brinkhuis H. & Huber H. 2004. Records of post-Cretaceous-Tertiary boundary millennial-scale cooling from the western Tethys: a smoking gun for the impact winter hypothesis? Geology, 32(6): 529–532.
 
21.
Goller K. & Rybczyński J.J. 2007. Gametophyte and sporophyte of tree ferns in vitro culture. Acta Soc. Bot. Poloniae, 76(3): 193–199.
 
22.
Hedlund R.W. 1966. Palynology of the Red Branch Member of the Woodbine Formation (Cenomanian), Bryan County, Oklahoma. Bull. Oklahoma Geol. Soc., 112: 1–69.
 
23.
Hutchinson J.T. & Langeland K.A. 2006. Survey of control measures on old world climbing fern (Lygodium microphyllum) in Southern Florida. Florida Scientist, 69(4): 217–233.
 
24.
Hutchinson J.T., Ferriter A., Serbesoff-King K., Langeland K.A. & Rodgers L. 2006. Old world climbing fern (Lygodium microphyllum) management plan for Florida: Second Edition. Florida Exotic Pest Plant Council, Florida, USA.
 
25.
Kroeger T.J. 1995. The paleoecologic significance of palynomorph assemblages from the Ludlow, Slope, and Cannonball formations, southwestern North Dakota. Ph.D. Thesis, University of North Dakota.
 
26.
Laage A. 1907. Bedingungen der Keimung von Farn- und Moossporen. Beih. Bot. Zentralbl., 21(1): 76–115.
 
27.
Leck M.A. & Simpson R.L. 1987. Spore bank of a Delaware River freshwater tidal wetland. Bull. Torrey Bot. Club, 114(1): 1–7.
 
28.
Lee W.T. & Knowlton F.H. 1917. Geology and paleontology of the Raton Mesa and other regions, Colorado and New Mexico. USGS Professional Paper 101: 1–435.
 
29.
Life A.C. 1907. Effect of light upon the germination of spores and the gametophyte of ferns. Missouri Botanical Garden Annual Report, 1907(18): 109–122.
 
30.
Lindsay S. & Dyer A.F. 1990. Fern spore banks: implications for gametophyte establishment: 243–253. In: Rita J. (Ed.), Taxonomia, biogeografia y conservacion de pteridofitos [Taxonomy, biogeography and conservation of pteridopytes]. Societat d’Historia Natural de les Illes Balears-IME, Palma de Mallorca.
 
31.
Lott M.S., Volin J.C., Pemberton R.W. & Austin D.F. 2003. The reproductive biology of the invasive ferns Lygodium microphyllum and L. japonicum (Schizaeaceae): implications for invasive potential. Am. J. Bot., 90(8): 1144–1152.
 
32.
Lloyd R.M. & Klekowski E.J., Jr. 1970. Pteridophyta: Evolutionary significance of chlorophyllous spores. Biotropica, 2(2): 129–137.
 
33.
Marcon C., Silveira T. & Droste A. 2014. Germination and gametophyte development of Cyathea corcovadensis (Raddi) Domin (Cyatheaceae) from spores stored at low temperatures. Maringá, 36(4): 403–410.
 
34.
Mehra P.N. & Gupta A. 1986. Gametophytes of Himalayan Ferns. P. KAPUR, C-61, Mayapuri Industrial Area Phase II. New Delhi: 1–204.
 
35.
Mo M., Yokawa K., Wan Y. & Baluška F. 2015. How and why do root apices sense light under the soil surface? Front. Plant Sci., 6(755): 1–8.
 
36.
Nayar B.K. & Kaur S. 1971. Gametophytes of homosporous ferns. The Botanical Review, 37(3): 295–396.
 
37.
Nester J.E. 1985. Comprehensive investigation of spore germination and antheridiogen chemistry in Anemia mexicana Klotzsch. Ph.D. Thesis, Iowa State University, Ames.
 
38.
Nester J.E. & Coolbaugh R.C. 1986. Factors influencing spore germination and early gametophyte development in Anemia mexicana and Anemia phyllitidis. Plant Physiology, 82(1): 230–235.
 
39.
Nester-Hudson J. 2011. Spore age as a factor influencing spore viability and gamete development in the fern, Anemia mexicana. Botany 2011: Healing the Planet, The Annual Meeting of Four Leading Scientific Societies, St. Louis, MO: 146.
 
40.
Nichols D.J. 1995. Palynostratigraphy in relation to sequence stratigraphy, Straight Cliffs Formation (Upper Cretaceous), Kaiparowits Plateau, Utah. USGS Bulletin, 2215-B: 1–21.
 
41.
Nichols D.J. 2002. Palynology and palynostratigraphy of the Hell Creek Formation in North Dakota: a microfossil record of plants at the end of the Cretaceous: GSA Special Paper, 361: 393–456.
 
42.
Nichols D.J. & Johnson K.R. 2008. Plants and the K-T Boundary. Cambridge University Press, Cambridge. USGS Bulletin, 2115-B, 21 p.
 
43.
Ocampo A.C., Vajda V. & Buffetaut E. 2007. Unravelling the Cretaceous-Paleogene (KT) turnover, evidence from flora, fauna and geology: 197–219. In: Cockell C., Gillmour I., Koeberl C. (Eds), Biological Processes Associated with Impact Events. Springer, Berlin.
 
44.
Ogg J.G. 2012. Geomagnetic polarity time scale: 85–114. In: Gradstein F., Ogg M., Schmitz M. & Ogg G. (Eds) The geologic time scale 2012. Elsevier, Amsterdam.
 
45.
Ospina K.R., Briones R. & Pérez-García B. 2015. Spore germination of three tree fern species in response to light, water potential, and canopy openness. Am. Fern J., 105(2): 59–72.
 
46.
Page C.N. 1979. Experimental aspects of fern biology: 552–585. In: Dyer A.F. (Ed.) The Experimental Biology of Ferns. Academic Press, London.
 
47.
Pope K.O., Baines K.H., Ocampo A.C. & Ivanov B.A. 1994. Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model. Earth and Planetary Science Letters, 128(3–4): 719–725.
 
48.
Rouse G.E. 1962. Plant microfossils from the Burrard Formation of western British Columbia. Micropaleontology, 8(2): 187–218.
 
49.
Rowe R. & Lockhart C. 2011. The invasion of the non-native climbing ferns. Palmetto, 28(3): 4–7.
 
50.
Schraudolf H. 1986. Phytohormones and Filicinae: chemical signals triggering morphogenesis in Schizaeaceae: 270–274. In: Bopp M. (Ed.) Plant Growth Substances 1985. Springer-Verlag, Berlin.
 
51.
Sebesta N., Richards J. & Taylor J. 2016. The effects of heat on spore viability of Lygodium microphyllum and implications for fire management. Southeastern Naturalist, 15(sp8): 40–50.
 
52.
Simabukuro E.A., Dyer A.F. & Felippe G.M. 1998a. The effect of sterilization and storage conditions on the viability of the spores of Cyathea delgadii. Am. Fern J., 88(2): 72–80.
 
53.
Simabukuro E.A., DE Carvalho M.A.M. & Felippe G.M. 1998b. Reserve substances and storage of Cyathea delgadii Sternb. Spores. Brazilian Journal of Botany, 21(2): 149–152.
 
54.
Simabukuro E.A., Esteves L.M. & Felippe G.M. 2000. Fern spore rain collected at two different heights at Moji Guaçu (São Paulo, Brazil). Fern Gazette, 16(3): 147–166.
 
55.
Stockey R.A., Lantz T.C & Rothwell G.W. 2006. Speirseopteris orbiculata gen. et. sp. nov. (Thelypteridaceae), a derived fossil Filicalean from the Paleocene of western North America. Int. J. Plant Sci., 167(3): 729–736.
 
56.
Suo J., Chen S., Zhao Q., Shi L. & Dai S. 2015. Fern spore germination in response to environmental factors. Frontiers in Biology, 10(4): 358–376.
 
57.
Sussman A.S. 1965. Longevity and resistance of the propagules of bryophytes and pteridophytes. Encyclopedia of Plant Physiology, 532(15): 1086–1092.
 
58.
Spicer R.A. & Collinson M.E. 2014. Plants and floral change at the Cretaceous-Paleogene boundary: three decades on. GSA Special Paper, 505: 117–132.
 
59.
Sweet A.R. 2001. Plants, a yardstick for measuring the environmental consequences of the Cretaceous-Tertiary boundary event. Geoscience Canada, 28(3): 127–138.
 
60.
Trivett M.L., Stockey R.A., Rothwell G.W. & Beard G. 2006. Paralygodium vancouverensis sp. nov. (Schizaeaceae): additional evidence for filicalean diversity in the Paleogene of North America. Int. J. Plant Sci., 167(3): 675–681.
 
61.
Tschudy R.H., Pillmore C.L., Orth C.J., Gillmore J.S. & Knight J.D. 1984. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, Western Interior. Science, 225(4666): 1030–1032.
 
62.
Vajda V. & Bercovici A. 2014. The global vegetation pattern across the Cretaceous-Paleogene mass extinction interval: a template for other mass extinction events. Global and Planetary Change, 122(2014): 29–49.
 
63.
Vajda V. & McLoughlin S. 2004. Fungal proliferation at the Cretaceous-Tertiary boundary. Science, 303(5663): 1489.
 
64.
Vajda V. & McLoughlin S. 2007. Extinction and recovery patterns of the vegetation across the Cretaceous-Paleogene boundary – a tool for unraveling the causes of the end-Permian mass-extinction. Rev. Palaeobot. Palynol., 144(1,2): 99–112.
 
65.
Vajda V., Raine J.I. & Hollis C.J. 2001. Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike: Science, 294(5547): 1700–1702.
 
66.
Vajda V., Lyson T.R., Bercovici A., Doman J.H. & Pearson D.A. 2013. A snapshot into the terrestrial ecosystem of an exceptionally well-preserved dinosaur (Hadrosauridae) from the Upper Cretaceous of North Dakota, USA. Cretac. Res., 46(1): 114–122.
 
67.
Vellekoop J., Esmeray-Senlet S., Miller K.G., Browning J.V., Sluijs A., van de Schootbrugge B., Sinninghe Damsté J.S. & Brinkhuis H. 2016. Evidence for Cretaceous-Paleogene boundary bolide “impact winter” conditions from New Jersey, USA. Geology, 44(8): 619–622.
 
68.
Vellekoop J., Sluijs A., Smit J., Schou­ten S., Weijers J.W.H., Damsté J.S.S. & Brinkhuis H. 2014. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary. Proc. Natl Acad. Sci., USA, 111(21): 7537–7541.
 
69.
Walker L.R. & Sharpe J.M. 2010. Ferns, disturbance and succession: 177–219. In: Mehltreter K., Walker L.R., Sharpe J.M. (Eds) Fern Ecology. Cambridge University Press, Cambridge: 177–219.
 
70.
Warter J.L.K. 1965. Palynology of a lignite of lower Eocene (Wilcox) age from Kemper County, Mississippi. Ph.D. Thesis. Baton Rouge, Louisiana State University Agricultural and Mechanical College.
 
71.
Wing S.L., Stromberg C.A.E., Hickey L.J., Tiver F., Willis B., Burnham R.J. & Behrensmeyer A.K. 2012. Floral and environmental gradients on a Late Cretaceous landscape. Ecol. Monographs, 82(1): 23–47.
 
72.
Wolfe J.A. & Upchurch G.R. 1987. Leaf assemblages across the Cretaceous-Tertiary boundary in the Raton Basin, New Mexico and Colorado. Proc. Natl Acad. Sci., USA, 84(15): 5096–5100.
 
 
CITATIONS (6):
1.
A Thelypteridaceous Fern from the Early Paleocene Raton Formation, South-central Colorado, and Its Importance in Interpreting the Climate of the Region
Keith Berry
The Mountain Geologist
 
2.
The First Plants to Recolonize Western North America Following the Cretaceous-Paleogene Mass Extinction Event
Keith Berry
International Journal of Plant Sciences
 
3.
Evidence for fungal proliferation following the Cretaceous/Paleogene mass-extinction event, based on chemostratigraphy in the Raton and Powder River basins, western North America
Keith Berry
Acta Palaeobotanica
 
4.
Pteridophytes as primary colonisers after catastrophic events through geological time and in recent history
Barry Thomas, Christopher Cleal
Palaeobiodiversity and Palaeoenvironments
 
5.
Fern Macroflora Identified in the Basal Danian of the Raton Formation Supports Palynological Signal of a Widespread “Postdisaster” Fern Flora
Keith Berry
International Journal of Plant Sciences
 
6.
Ferns as facilitators of community recovery following biotic upheaval
Lauren Azevedo-Schmidt, Ellen D Currano, Regan E Dunn, Elizabeth Gjieli, Jarmila Pittermann, Emily Sessa, Jacquelyn L Gill
BioScience
 
eISSN:2082-0259
ISSN:0001-6594
Journals System - logo
Scroll to top