ORIGINAL ARTICLE
Anatomically preserved early Cretaceous lycophyte shoots; enriching the paleontological record of Lycopodiales and Selaginellales
,
 
 
 
More details
Hide details
1
Department of Environmental and Plant Biology, Porter Hall, Ohio University, Athens, Ohio, 45701 USA
 
2
Department of Botany and Plant Pathology, Cordley Hall, Oregon State University, Corvallis, OR 97331 USA
 
 
Submission date: 2023-05-14
 
 
Acceptance date: 2023-10-17
 
 
Online publication date: 2023-11-23
 
 
Publication date: 2023-11-23
 
 
Acta Palaeobotanica 2023; 63(2): 119-128
 
HIGHLIGHTS
  • Anatomically preserved Early Cretaceous herbaceous lycophytes.
  • Most ancient fossil evidence for crown group Lycopodiales and Selaginellales
  • Species included are Lycopodicaulis oellgaardii and Selaginella quatsinoense sp. nov.
KEYWORDS
ABSTRACT
Anatomically preserved lycophytes of the Lycopodiales and Selaginellales have been discovered among a diverse assemblage of plants and fungi in carbonate marine concretions at the Apple Bay locality along the shore of Holbert Inlet near the northern end of Vancouver Island, British Columbia, Canada. Lycopodialean stems are plectostelic and actinostelic, branch dichotomously, and are similar to both Lycopodicaulis oellgaardii and Lycoxylon spp. The Selaginella specimens represent the first anatomically preserved Selaginellales with excellent internal cellular preservation in the fossil record, and are described as Selaginella quatsinoense Rothwell et Stockey sp. nov. Stems have three and five exarch, monarch stelar segments, each of which is surrounded by an aerenchymatous endodermis with trabeculae. The leaf base is indented on the adaxial surface, suggesting the position of a ligule. These fossils document that species with diagnostic internal anatomy of modern Lycopodiales and Selaginellales evolved no later than the Valanginian of the early Cretaceous.
 
REFERENCES (36)
1.
Ash, S.R., 1972. Late Triassic plants from the Chinle Formation of north-eastern Arizona. Palaeontology 15, 598–618.
 
2.
Banerji, J., 2000. Megafloral diversity of the upper Gondwana sequence of the Rajmahal Basin, India. Journal of African Earth Sciences 31, 133–144. https://doi.org/10.1016/S0899-....
 
3.
Bateman, R.M., Scott, A.C., 1990. A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 2. Volcanicity, palaeoenvironments and palaeoecology. Transactions of the Royal Society of Edinburgh 81, 161–194. https://doi.org/10.1017/S02635....
 
4.
Bateman, R.M., Kenrick, P., Rothwell, G.W., 2007. Do eligulate herbaceous lycopsids occur in Palaeozoic strata? Hestia eremosa gen. et sp. nov. from the Dinantian of Oxroad Bay, East Lothian, Scotland. Review of Palaeobotany and Palynology 144, 323–335. https://doi.org/10.1016/j.revp....
 
5.
Cariglino, B., Zavattieri, A.M., Lara, Y.M.B. 2023. Una licofita herbácea fértil del Triásico Superior de Mendoza: Premer registro de Selaginellales para Argentina. Publicación Electrónica de la Asociación Paleontológica Argentina 23, 43 (https://www.peapaleontologica....).
 
6.
Darrah, W.C., 1938. A remarkable Selaginella. Botanical Museum Leaflets Harvard University 6, 113–136.
 
7.
DiMichele, W.A., Stein, W.E., Bateman, R.M. 2001. Ecological sorting of vascular plant classes during the Paleozoic evolutionary radiation. In: Allmon, W.E., Bottjer, D.J. (Eds), Evolutionary paleoecology: the ecological context of evolutionary change. Columbia University Press, New York, pp. 285–335.
 
8.
DiMichele, W.A., Bateman, R.M., Rothwell, G.W., Duijnstee, I., Elrick, S.D., Looy, C.V., 2022. Stigmaria: a review of the anatomy, development, and functional morphology of the rootstock of the arboreous lycopsids. International Journal of Plant Sciences 183, 493–534. https://doi.org/10.1086/720641.
 
9.
Eames, A.J., 1936. Morphology of Vascular Plants, Lower Groups. McGraw-Hill Book Co., New York, N.Y., U.S.A.
 
10.
Gierlowski-Kordesch, E.H., Rothwell, G.W., Stockey, R.A., Finkelstein, D.B., 2021. Submarine groundwater discharge as a catalyst for eodiagenetic carbonate cements within marine sedimentary basins. In: Rosen, M.R., Park-Boush, L., Finkelstein, D.B., Pueyo, S.P. (Eds), Limnogeology: Progress, challenges and opportunities: A tribute to Elizabeth Gierlowski-Kordesch. Springer Nature Switzerland AG, Switzerland, pp. 445–468.
 
11.
Haggart, J.W., 1991. A synthesis of Cretaceous stratigraphy, Queen Charlotte Islands, British Columbia. In: Woodsworth, G.J. (Ed.), Evolution and hydrocarbon potential of the Queen Charlotte Basin. Geological Survey of Canada, British Columbia, Paper 90–10, 253–277.
 
12.
Haggart, J.W., 1996. Stratigraphy and correlation of Cretaceous rocks of the Northern Insular Belt, western Canada. Mitteilugen Geologie-Paläontologie Institut, Universtät Hamburg, pp. 7767–7773.
 
13.
Herrera, F., Testo, W.L., Field, A.R., Clark, E.G., Herendeen, P.S., Crane, P.R., Shi, G., 2022. A permineralized Early Cretaceous lycopsid from China and the evolution of crown clubmosses. New Phytologist 233, 2310–2322. https://doi.org/10.1111/nph.17....
 
14.
Li, Y., Li, Y-D., Yong-Dong, W., Schneider, H., Shi, G-L., 2022. Re-appraisal of lacewing mimicry of liverworts from the mid-Cretaceous Kachin amber, Myanmar with a description of Selaginella cretacea sp. nov. (Selaginellales, Selaginellaceae). Cretaceous Research 133, 105143. https://doi.org/10.1016/j.cret....
 
15.
Joy, K.W., Willis, A.J., Lacey, W.S., 1956. A rapid cellulose peel technique in paleobotany. Annals of Botany, N.S. 20, 635–637.
 
16.
Kenrick, P., Crane, P.R., 1997. The origin and early diversification of land plants. Smithsonian Institution Press, Washington D.C., U.S.A.
 
17.
Klymiuk, A.A., Rothwell, G.W., Stockey, R.Q., 2022. A novel cupulate seed plant, Xadzigacalix quatsinoensis gen. et sp. nov., provides new insight into the Mesozoic radiation of gymnosperms. American Journal of Botany 109, 966–985. https://doi.org/10.1002/ajb2.1....
 
18.
Knowlton, F.H., 1916. A new fossil Selaginella from the lower Tertiary of Montana. Torreya 16, 201–204.
 
19.
Pigg, K.B., 1992. Evolution of isoetalean lycopsids. Annals of the Missouri Botanical Garden 79, 589–612. https://doi.org/10.2307/239975....
 
20.
Pigg, K.B., 2001. Isoetalean lycopsid evolution: fromthe Devonian to the Present. American Fern Journal 91, 99–114.
 
21.
Phillips, T.L., 1980. Stratigraphic and geographic occurrences of permineralized coal-swamp plants – Upper Carboniferous of North America and Europe. In: Dilcher, D.L., Taylor, T.N. (Eds), Biostratigraphy of fossil plants successional and paleoecological analyses. Dowden Hutchinson & Ross, Stroudsburg, Pennsylvania, U.S.A., pp. 25–92.
 
22.
Rothwell, G.W., Erwin, D.M., 1985. The rhizomorph apex of Paurodendron; implications for homologies among the rooting organs of Lycopsida. American Journal of Botany 72, 86–98. https://doi.org/10.1002/j.1537....
 
23.
Salvi, J., Jasper, A., Richardi-Branco, F., Bernardesde-Oliveira, M.E.C., Guerra-Sommer, M., 2008. Record of the genus Lycopodites in the Lower Permian of Paraná Basin, Brazil. Anais da Academia Brasileira de Ciências 80, 553–563. https://doi.org/10.1590/S0001-....
 
24.
Schlanker, C.M., Leisman, G.A., 1969. Carboniferous lycopod Selaginella fraiponti comb. nov. Botanical Gazette 130, 35–41.
 
25.
Schmidt, A.R., Regalado, L., Weststrand, S., Korall, P., Sadowski, E., Schneider, H., Jansen, E., Bechteler, J., Krings, M., Műller, P., Wang, B., Wang, X., Rikkinen, J., Seyfullah, L.J., 2020. Selaginella was hyperdiverse already in the Cretaceous. New Phytologist 228, 1176–1182. https://doi.org/10.1111/nph.16....
 
26.
Schmidt, A.R., Korall, P., Krings, M., Weststrand, S., Bergschneider, L., Sadowski, Bechteler, J., Rikkinen, J., Regalado, L., 2022. Selaginella in Cretaceous amber from Myanmar. Willdenowia 52, 179–245. https://doi.org/10.3372/wi.52.....
 
27.
Schopf, J.M., 1975. Modes of fossil preservation. Review of Palaeobotany and Palynology 20, 27–53. https://doi.org/10.1016/0034-6....
 
28.
Skog, J.E., Hill, C.R., 1992. The Mesozoic herbaceous lycopsids. Annals of the Missouri Botanical Garden 79, 648–675. https://doi.org/10.2307/239975....
 
29.
Smith, S.Y., Rothwell, G.W., Stockey, R.A., 2003. Cyathea cranhamii sp. nov. (Cyatheaceae) anatomically preserved tree fern sori from the Lower Cretaceous of Vancouver Island. American Journal of Botany 90, 755–760. https://doi.org/10.3732/ajb.90....
 
30.
Srivastava, B.P., 1946. Silicified plant remains from the Rajmahal Series of India. Proceedings of the National Academy of Sciences India 15, 185–211.
 
31.
Taylor, T.N., Taylor, E.L., Krings, M., 2009. Paleobotany, the biology and evolution of fossil plants. 2nd Ed. Elsevier, Amsterdam, the Netherlands.
 
32.
Thomas, B.A., 1992. Paleozoic herbaceous lycopsids and the beginnings of extant Lycopodium sens. lat. and Selaginella sens. lat. Annals of the Missouri Botanical Garden 79, 623–631. https://doi.org/10.2307/239975....
 
33.
Townrow, J.A., 1968. A fossil Selaginella from the Permian of New South Wales. Botanical Journal of the Linnean Society 61, 13–23.
 
34.
Tryon, A.F., Lugardon, B., 1990. Spores of the Pteridophyta. Spinger-Verlag, New York, U.S.A.
 
35.
Wikström, N., 2001. Diversification and relationships of extant homosporous lycopods. American Fern Journal 91, 150–165.
 
36.
Zeiller, R., 1906. Bassin houiller et Permien de Blanzy et de Creusot. Paris, France, pp. 140–150.
 
eISSN:2082-0259
ISSN:0001-6594
Journals System - logo
Scroll to top