ORIGINAL ARTICLE
Fossil seeds from the La Cantera Formation, Early Cretaceous, San Luis Province, Argentina
 
More details
Hide details
1
IMIBIO-CONICET – San Luis. Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, San Luis (5700), Argentina
2
Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Centro Científico Tecnológico – CONICET y UNCuyo. Av. Adrián Ruiz Leal s/n – Mendoza C.C.131 (5500), Argentina
3
Facultad de Química, Bioquímica y Farmacia, IMIBIO – Universidad Nacional de San Luis, Chacabuco 913, San Luis (5700), Argentina
Submission date: 2019-11-21
Online publication date: 2020-06-29
Publication date: 2020-06-29
 
Acta Palaeobotanica 2020; 60(1): 181–198
 
KEYWORDS
ABSTRACT
In a study of fossil seeds recovered from the La Cantera Formation, Early Cretaceous, San Luis Basin, we establish a new species, Carpolithus volantus, and describe other specimens attributed to Carpolithus spp. and Ephedra canterata. The botanical affinity of winged seeds assigned to Carpolithus volantus is discussed in relation to the fossil flora recovered from this formation. Based on the abundance of Gnetales in the San Luis Basin (pollen grains, reproductive and vegetative structures assigned to Ephedra), we propose that Carpolithus volantus is affiliated with Gnetales (Weltwitschia). We suggest that Carpolithus spp. seeds may be angiospermous, because this group, represented by leaves and flowers, dominates the fossil macroflora of the La Cantera Formation. Micro- and macrofloral analyses of the La Cantera Formation and an assessment of available dispersal vectors suggests that wind (anemochory) and water (hydrochory) may have been the most important dispersal strategies for these seeds. The abundance and small size of seeds recovered from the La Cantera Formation, together with their morphological characters, such as the presence of wings in Carpolithus volantus, also favour abiotic mechanisms of dispersal such as anemochory or hydrochory.
 
REFERENCES (139)
1.
Abbink, O.A., Van Konijnenburg-Van Cittert, J.H.A., Visscher, H., 2004. A sporomorph ecogroup model for the Northwest European Jurassic-Lower Cretaceousi: concepts and framework. Netherlands Journal of Geosciences 83(1), 17–31. https://doi.org/10.1017/s00167....
 
2.
Alvin, K.L., 1982. Cheirolepidiaceae: biology, structure and paleoecology. Review of Palaeobotany and Palynology 37(1–2), 71–98. https://doi.org/10.1016/0034-6....
 
3.
Archangelsky, A., 2000. Estudio sobre semillas neopaleozoicas de Argentina. Boletín de la Academia Nacional de Ciencias, 64: 79–115.
 
4.
Archangelsky, S., Barreda, V., Passalia, M.G., Gandolfo, M., Prámparo, M., Romero, E., Cúneo, R., Zamuner, A., Iglesias, A., Llorens, M., Puebla, G., Quattrocchio, M., Wolfgang, V., 2009. Early angiosperm diversification: evidence from southern South America. Cretaceous Research 30(5), 1073–1082. https://doi.org/10.1016/j.cret....
 
5.
Arcucci, A.B., Prámparo, M.B., Codorniú, L., Giordano, G., Castillo Elías, G., Puebla, G., Mego, N., Gómez, M., Bustos Escalona, E., 2015. Biotic assemblages from lower Cretaceous lacustrine systems, San Luis Basin, central–western Argentina. Boletín Geológico y Minero 126, 109–128.
 
6.
Austen, P.A., Batten, D.J., 2018. English Wealden fossils: an update. Proceedings of the Geologists’ Association 129(2), 171–201. https://doi.org/10.1016/j.pgeo....
 
7.
Axsmith, B.J., Jacobs, B.F., 2005. The conifer Frenelopsis ramosissima (Cheirolepidiaceae) in the Lower Cretaceous of Texas: systematic, biogeographical, and paleoecological implications. International Journal of Plant Sciences 166(2), 327–337. https://doi.org/10.1086/427202.
 
8.
Ballent, S., Carignano, A.P., Iglesias, A., Poiré, D.G., 2011. Microfósiles Calcáreos no Marinos y semillas de la Formación Piedra Clavada (Albiano) en su área Tipo, Provincia de Santa Cruz, Argentina. Ameghiniana 48(4), 541–555. https://doi.org/10.5710/amgh.v....
 
9.
Barreda, V.D., Cúneo, N.R., Wilf, P., Currano, E.D., Scasso, R.A., Brinkhuis, H., 2012. Cretaceous/Paleogene floral turnover in Patagonia: drop in diversity, low extinction, and a Classopollis spike. PLoS One 7(12), e52455. https://doi.org/10.1371/journa....
 
10.
Bateman, R.M., Crane, P.R., DiMichele, W.A., Kenrick, P.R., Rowe, N.P., Speck T., Stein, W.E., 1998. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annual Review of Ecology and Systematics 29(1), 263–292. https://doi.org/10.1146/annure....
 
11.
Bates, J.W., Wibbelmann, M.H., Proctor, M.C., 2009. Salinity responses of halophytic and non-halophytic bryophytes determined by chlorophyll fluorometry. Journal of Bryology 31(1), 1119. https://doi.org/10.1179/174328....
 
12.
Batten, D.J., Zavattieri, A.M., 1995. Occurrence of dispersed seed cuticles and similar microfossils in mainly Cretaceous successions in the Northern Hemisphere. Cretaceous Research 16, 73–94. https://doi.org/10.1006/cres.1....
 
13.
Batten, D.J., Zavattieri, A.M., 1996. Re-examination of seed cuticles from Cretaceous deposits in West Greenland. Cretaceous Research 17(6), 691–713. https://doi.org/10.1006/cres.1....
 
14.
Bell, P.R., Hemsley, A.R., 2000. Green plants: their origin and diversity. Cambridge, UK: Cambridge University Press.
 
15.
Benedict, J.C., Smith, S.Y., Collinson, M.E., Leong-Škorničková, J., Specht, C.D., Fife, J.L., Marone, F., Xiao, X., Parkinson, D.Y., 2015. Evolutionary significance of seed structure in Alpinioideae (Zingiberaceae). Botanical Journal of the Linnean Society 178(3), 441–466. https://doi.org/10.1111/boj.12....
 
16.
Benedict, J.C., Smith, S.Y., Collinson, M.E., LeongŠkorničková, J., Specht, C.D., Marone, F., Xia, X., Parkinson, D.Y., 2016. Seed morphology and anatomy and its utility in recognizing subfamilies and tribes of Zingiberaceae. American Journal of Botany 102(11), 1814–1841. https://doi.org/10.3732/ajb.15....
 
17.
Blume, K.L., 1835. Order D. Gnetales. C.F.P. von Martius, Consp. Regn. Veg.
 
18.
Bornman, C.H., Elsworthy, J.A., Butler, V., Botha, C. E.J. 1972. Welwitschia mirabilis: observations on general habit, seed, seedling and leaf characteristics. Madoqua (II) 1: 53–66.
 
19.
Brongniart, A., 1822. Carpolithus. Mémoires Du Muséum National D’histoire Naturelle 8, 319.
 
20.
Castillo-Elías, G., Prámparo, M.B., Sánchez, M.L., 2016. El importante rol de las estructuras tipo MISS en la preservación fosilífera en un ambiente continental: Formación La Cantera (Aptiano tardío), Cuenca de San Luis. 11° Congreso de la Asociación Paleontológica Argentina 1, 158–159 (Rio Negro, Argentina).
 
21.
Chang, M.M., Chen, P.J., Wang, Y.Q., Wang, Y., 2003. The Jehol Biota: The Emergence of Feathered Dinosaurs, Beaked Birds and Flowering Plants. Shanghai Scientific and Technological Publishers, Shanghai.
 
22.
Collinson, M.E., 2002. The ecology of Cainozoic ferns. Review of Palaeobotany and Palynology 119(1–2), 51–68. https://doi.org/10.1016/s0034-....
 
23.
Crane, P.R., Upchurch, Jr G.R., 1987. Drewria potomacensis gen. et sp. nov., an Early Cretaceous member of Gnetales from the Potomac Group of Virginia. American Journal of Botany 74(11), 1722–1736. https://doi.org/10.1002/j.1537....
 
24.
Crane, P.R., Pedersen, K.R., Friis, E.M., Drinnan, A.N., 1993. Early Cretaceous (Early to Middle Albian) platanoid inflorescences associated with Sapindopsis leaves from the Potomac Group of Eastern North America. Systematic Botany 18, 328–344. https://doi.org/10.2307/241940....
 
25.
Crane, P.R, Herendeen, P., Friis, E.M., 2004. Fossils and plant phylogeny. American Journal of Botany 91, 1683–1699. https://doi.org/10.3732/ajb.91....
 
26.
Criado Roque, P., Mombru, C.A., Moreno, J., 1981. Sedimentitas mesozoicas. In: Geología y Recursos Naturales de la Provincia de San Luis. Relatorio del VII Congreso Geológico Argentino, 79–96.
 
27.
Devos, N., Renner, M.A.M., Gradstein, R., Shaw, A.J., Laenen, B., Vanderpoorten, A., 2011. Evolution of sexual systems, dispersal strategies and habitat selection in the liverwort genus Radula. New Phytologist 192, 225–236. https://doi.org/10.1111/j.1469....
 
28.
Dilcher, D.L., Bernardes-De-Oliveira, M.E., Pons, D.Y., Lott, T.A., 2005. Welwitschiaceae from the Lower Cretaceous of northeastern Brazil. American Journal of Botany 92(8), 1294–1310. https://doi.org/10.3732/ajb.92....
 
29.
Doyle, J.A., 1996. Seed plant phylogeny and the relationships of Gnetales. International Journal of Plant Sciences, 3–39.
 
30.
Drinnan, A.N., Chambers, T.C., 1986. Flora of the Lower Cretaceous Koonwarra Fossil Beds (Korumburra Group), South Gippsland, Victoria. Association of Australasian Palaeontologists Memoir 3, 1–77.
 
31.
Dumortier, B.C.J., 1829. Familia 6 Ephedraceae. Analyse des Familles des Plantes, 11. During, H.J., 2007. Relations between clonal growth, reproduction and breeding system in the bryophytes of Belgium and The Netherlands. Nova Hedwigia, Beiheft 131, 133–145.
 
32.
Eriksson, O., 2008. Evolution of seed size and biotic seed dispersal in angiosperms: paleoecological and neoecological evidence. International Journal of Plant Sciences 169(7), 863–870. https://doi.org/10.1086/589888.
 
33.
Eriksson, O., Kainulainen, K., 2011. The evolutionary ecology of dust seeds. Perspectives in Plant Ecology, Evolution and Systematics 13(2), 73–87. https://doi.org/10.1016/j.ppee....
 
34.
Eriksson, O., Friis, E.M., Löfgren, P., 2000. Seed size, fruit size, and dispersal systems in angiosperms from the Early Cretaceous to the Late Tertiary. The American Naturalist 156(1), 47–58. https://doi.org/10.1086/303367.
 
35.
Escapa, I., Cúneo, R., Axsmith, B., 2008. A new genus of the Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 151(3–4), 110–122. https://doi.org/10.1016/j.revp....
 
36.
Flores, M., 1969. El Bolsón de Las Salinas en la Provincia de San Luis. Actas de las Cuartas Jornadas Geológicas Argentinas, I, 311–327 (Mendoza, Argentina).
 
37.
Flores, M., Criado Roque, P., 1972. Cuenca de San Luis. 1º Simposio de Geología Regional Argentina. Academia Nacional de Ciencias Córdoba, 567–580 (Córdoba, Argentina).
 
38.
Frahm, J.P., 1994. Moose-lebende Fossilien. Biologie in unserer Zeit 24(3), 120–124. https://doi.org/10.1002/biuz.1....
 
39.
Frahm, J.P., 2007. Diversity, dispersal and biogeography of bryophytes (mosses). In Protist diversity and geographical distribution, 43–50 (Springer, Dordrecht). https://doi.org/10.1007/978-90....
 
40.
Frenguelli, J., 1953. (unpubl). La flora fósil de la región del Alto Río Chalía en Santa Cruz (Patagonia). PhD thesis, Universidad Nacional Eva Perón, Facultad de Ciencias Naturales, Buenos Aires.
 
41.
Friis, E.M., Crepet, W.L., 1987. Time of appearance of floral features. In: Friis, E.M., Chaloner, W.G., Crane, P.R. (eds), The Origins of Angiosperms and their Biological Consequences. Cambridge University Press, pp. 145–179.
 
42.
Friis, E.M., Pedersen, K.R., Crane, P.R., 1995. Appomattoxia ancistrophora gen. et sp. nov., a new Early Cretaceous plant with similarities to Circaeaster and extant Magnoliidae. American Journal of Botany 82(7), 933–943. https://doi.org/10.1002/j.1537....
 
43.
Friis, E.M., Crane, P.R, Pedersen, K.R., 1997. Anacostia, a new basal angiosperm from the Early Cretaceous of North America and Portugal with trichotomocolpate / monocolpate pollen. Grana 36, 225–244. https://doi.org/10.1080/001731....
 
44.
Friis, E.M., Pedersen, K.R., Crane, P.R., 1999. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Annals of the Missouri Botanical Garden 86, 259–296. https://doi.org/10.2307/266617....
 
45.
Friis, E.M., Pedersen, K.R., Crane, P.R., 2006. Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 251–293. https://doi.org/10.1016/j.pala....
 
46.
Friis, E.M., Pedersen, K.R., Crane, P.R., 2009. Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales Erdtmanithecales– Gnetales group. American Journal of Botany 96(1), 252–283. https://doi.org/10.3732/ajb.08....
 
47.
Friis, E.M., Crane, P.R., Pedersen, K.R., 2011. Early flowers and angiosperm evolution. Cambridge University Press.
 
48.
Friis, E.M., Pedersen, K.R., Crane, P.R., 2014. Welwitschioid diversity in the Early Cretaceous: Evidence from fossil seeds with pollen from Portugal and eastern North America. Grana 53(3), 175–196. https://doi.org/10.1080/001731....
 
49.
Frumin, S., Friis, E.M., 1999. Magnoliid reproductive organs from the Cenomanian-Turonian of northwestern Kazakhstan: Magnoliaceae and Illiciaceae. Plant Systematics and Evolution 216(3–4), 265–288. https://doi.org/10.1007/bf0108....
 
50.
Gandolfo, M.A., Cúneo, R., 2005. Fossil Nelumbonaceae from the La Colonia Formation (Campanian–Maastrichtian, Upper Cretaceous), Chubut, Patagonia, Argentina. Review of Palaeobotany and Palynology 133, 169–178. https://doi.org/10.1016/j.revp....
 
51.
Giddy, C., 1974. Cycads of South Africa: With Pencil Drawings and Diagrams by Barbara Jeppe. Purnell.
 
52.
Giordano, P.G., 2017. Diversity of Cretaceous continental actinopterygians from Argentina, South America. Research and Knowledge 3(2), 1–8.
 
53.
Givnish, T.J., 1980. Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms. Evolution 34(5), 959–972. https://doi.org/10.2307/240800....
 
54.
Haig, D., Westoby, M., 1989. Selective forces in the emergence of the seed habit. Biological Journal of the Linnean Society 38(3), 215–238. https://doi.org/10.1111/j.1095....
 
55.
Harper, J.L., Lovell, P.H., Moore, K.G., 1970. The shapes and sizes of seeds. Annual Review of Ecology and Systematics 1(1), 327–356. https://doi.org/10.1146/annure....
 
56.
Harris, T.M., 1979. The Yorkshire Jurassic flora. V. Coniferales. British Museum of Natural History (London).
 
57.
Hedderson, T.A., Longton, R.E., 1995. Patterns of life history variation in the Funariales, Polytrichales and Pottiales. Journal of Bryology 18(4), 639–675. https://doi.org/10.1179/jbr.19....
 
58.
Henry, R.J., 2005. Plant diversity and evolution: genotypic and phenotypic variation in higher plants. Cabi Publishing.
 
59.
Herngreen, G.F.W., 1996. Cretaceous palynofloral provinces: a review. Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation 3, 1157–1188.
 
60.
Hickey, L.J., Doyle, J.A., 1977. Early Cretaceous fossil evidence for angiosperm evolution. The Botanical Review 43(1), 3–104. https://doi.org/10.1007/bf0286....
 
61.
Hollander, J.L., Vander Wall, S.B., 2009. Dispersal syndromes in North American Ephedra. International Journal of Plant Sciences 170(3), 323–330. https://doi.org/10.1086/596334.
 
62.
Hollander, J.L., Vander Wall, S.B., Baguley, J.G., 2010. Evolution of seed dispersal in North American Ephedra. Evolutionary Ecology 24(2), 333–345. https://doi.org/10.1007/s10682....
 
63.
Hooker, J.J.D., 1863. On Welwitschia, a new Genus of Gnetaceae. Transactions of the Linnean Society of London 24(1), 1–48. https://doi.org/10.1111/j.1096....
 
64.
Ickert-Bond, S.M., Renner, S.S., 2016. The Gnetales: recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times. Journal of Systematics and Evolution 54(1), 1–16. https://doi.org/10.1111/jse.12....
 
65.
Kato, M., 1993. Biogeography of ferns: dispersal and vicariance. Journal of biogeography, 265–274. https://doi.org/10.2307/284563....
 
66.
Krassilov, V.A., 1982. Early Cretaceous flora of Mongolia. Palaeontographica Abt. B, 1–43.
 
67.
Krassilov, V., Schrank, E., 2011. New Albian macroand palynoflora from the Negev (Israel) with description of a new gymnosperm morphotaxon. Cretaceous Research 32(1), 13–29. https://doi.org/10.1016/j.cret....
 
68.
Kubitzki, K., 1990. Welwitschiaceae. In: Kramer, K.U., Green, P.S. (eds), Pteridophytes and Gymnosperms. The Families and Genera of Vascular Plants, vol 1. Springer, Berlin, Heidelberg, pp. 387–391. https://doi.org/10.1007/978-3-....
 
69.
Kunzmann, L., Mohr, B.A.R., Wilde, V., Bernardes- De-Oliveira, M.E.C., 2011. A putative gnetalean gymnosperm Cariria orbiculiconiformis gen. nov. et spec. nov. from the Early Cretaceous of northern Gondwana. Review of Palaeobotany and Palynology, 165: 75–95. https://doi.org/10.1016/j.revp....
 
70.
Kvaček, Z., Manchester, S.R., Schorn, H.E., 2000. Cones, seeds, and foliage of Tetraclinis salicornioides (Cupressaceae) from the Oligocene and Miocene of western North America: a geographic extension of the European Tertiary species. International Journal of Plant Sciences 161(2), 331–344. https://doi.org/10.1086/314245.
 
71.
Leishman, M.R., Wright, I.J., Moles, A.T., Westoby, M., 2000. The evolutionary ecology of seed size. In: Fenner, M. (ed.), Seeds: The Ecology of Regeneration in Plant Communities, 2nd edn. CABI Publishing, Oxford. https://doi.org/10.1079/978085....
 
72.
Leng, Q., Friis, E.M., 2003. Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Systematics and Evolution 241(1–2), 77–88. https://doi.org/10.1007/s00606....
 
73.
Lindley, J., 1830. An Introduction to the Natural System of Botany. Longman and London. Linnaeus, C.V., 1753. Species Plantarum, Tomus 1. Stockholm.
 
74.
Longton, R.E., Schuster, R.M., 1983. New manual of bryology. Reproductive biology, 386–462.
 
75.
McLoughlin, S., Pott, C., 2019. Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants. Palaeogeography, palaeoclimatology, palaeoecology 515, 47–69. https://doi.org/10.1016/j.pala....
 
76.
Mejía-Velásquez, P.J., Dilcher, D.L., Jaramillo, C., Fortini, L.B., Manchester, S.R., 2012. Palynological composition of a Lower Cretaceous South American Tropical sequence: Climatic implications and diversity comparisons with other latitudes. American Journal of Botany 99, 1819–1827. https://doi.org/10.3732/ajb.12....
 
77.
Mishler, B.D., 2001. The biology of bryophytes: bryophytes aren’t just small tracheophytes. American Journal of Botany 88(11), 2128–2131. https://doi.org/10.2307/355843....
 
78.
Moles, A.T., Ackerly, D.D., Webb, C.O., Tweddle, J.C., Dickie, J.B., Westoby, M., 2005a. A brief history of seed size. Science 307(5709), 576–580.
 
79.
Moles, A.T., Ackerly, D.D., Webb ,C.O., Tweddle, J.C., Dickie, J.B., Pitman, A.J., Westoby, M., 2005b. Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences of the United States of America 102(30), 10540–10544. https://doi.org/10.1073/pnas.0....
 
80.
Musacchio, E.A., Vallati, P., 2007. Late Cretaceous non-marine microfossils of Plottier Formation (Cretaceous) at Zampal, Argentina. Instituto Geológico y Minero de España, Madrid. Cuaderno Geominero 8, 273–278.
 
81.
Papú, O.H., 2002. Nueva microflora de edad maastrichtiana en la localidad de Calmu-Co, sur de Mendoza, Argentina. Ameghiniana 39(4), 415–426.
 
82.
Passalia, M.G., Prámparo, M.B., Calvo, J., Heredia, S., 2008. Primer registro de hojas de angiospermas en el Grupo Neuquén (Turoniano tardío Coniaciano temprano), Lago Barreales, Argentina. Ameghiniana 45, 233–239.
 
83.
Pedersen, K.R., Friis, E.M, Crane, P.R., Drinnan, A.N., 1994. Reproductive structures of an extinct platanoid from the early Cretaceous (latest Albian) of eastern North America. Review of Palaeobotany and Palynology 80(3–4), 291–303. https://doi.org/10.1016/0034-6....
 
84.
Petrulevicius, J.F., Nel, A., Sallenave, S., 2010. Recent genus Notonecta (Insecta: Heteroptera: Notonectidae) in the Lower Cretaceous of San Luis, Argentina: Palaeoecological implications. Annales de la Société entomologique de France (N.S.): International Journal of Entomology 46, 1–2. https://doi.org/10.1080/003792....
 
85.
Prámparo, M.B., 1988a. Esporas triletes levigadas y apiculadas de la Formación La Cantera (Cretácico de la Cuenca de San Luis) en su localidad tipo.- IV Congreso Argentino de Paleontología y Bioestratigrafía, Actas III, 51–62. (Mendoza).
 
86.
Prámparo, M.B., 1988b. Nuevos aportes a la palinología de la Formación La Cantera, Cretácico de la Cuenca de San Luis, en su localidad tipo. 4º Congreso Argentino de Paleontología y Bioestratigrafía III, 41–50 (Mendoza, Argentina).
 
87.
Prámparo, M.B., 1989. (Unpublished.) Palinología estratigráfica del Cretácico de la Cuenca de San Luis. Tesis Doctoral. Universidad Nacional de Río Cuarto, Córdoba.
 
88.
Prámparo, M.B., 1990. Palynoestratigraphy of the Lower Cretaceous of the San Luis Basin, Argentina. Its place in the Lower Cretaceous floral provinces pattern. Neues Jahrbuchfür Geologie und Paläontologie Abhadlungen 18, 255–266. https://doi.org/10.1127/njgpa/....
 
89.
Prámparo, M.B., 1994. Lower Cretaceous palynoflora of the La Cantera Formation, San Luis Basin. Correlation with other Cretaceous palynofloras of Argentina. Cretaceous Research 15, 193–203. https://doi.org/10.1006/cres.1....
 
90.
Prámparo, M.B., 1999a. Microfitoplancton orgánico del Cretácico Inferior de la Cuenca de San Luis. Parte I: Scenedesmaceae y Chlorococcaceae. Asociación Paleontológica Argentina. Publicación Especial 6. 10º Simposio Argentino de Paleobotánica y Palinología 39–42 (Buenos Aires, Argentina).
 
91.
Prámparo, M.B., 1999b. Granos de polen de primitivas angiospermas en el Cretácico Inferior de la Cuenca de San Luis y su distribución en otras cuencas cretácicas de Argentina. Boletim 5º Simposio sobre o Cretaceo do Brasil, 539–543. (.
 
92.
Prámparo, M.B., 2012. Non-marine Cretaceous palynomorph biostratigraphy of Argentina: a brief summary. Journal of Stratigraphy 36, 213–228.
 
93.
Prámparo, M.B., Quattrocchio, M.E., Gandolfo, M.A., Zamaloa, M.C., Romero, E., 2007. Historia evolutiva de las angiospermas (Cretácico Paleógeno) en Argentina a través de los registros paleoflorísticos. Ameghiniana, Suplemento 50º Aniversario, 157–172.
 
94.
Prámparo, M.B., Vento, B., Narvaez, P., Mego, N., Puebla, G.G., 2018. Cretaceous climatic reconstruction from Argentina based on palynological data. Tomo Especial Paleoclimas en Iberoamerica. Boletin Geológico y Minero 129(4), 615–631. https://doi.org/10.21701/bolge....
 
95.
Puebla, G.G., 2009. A new angiosperm leaf morphotype from the Early Cretaceous (Late Aptian) of San Luis basin, Argentina. Ameghiniana 46(3), 557–566.
 
96.
Puebla, G.G., 2010 (unpubl.). Evolución de las comunidades vegetales basada en el estudio de la flora fósil presente en la Formación de La Cantera, Cretácico temprano, Cuenca de San Luis. Tesis Doctoral. PROBIOL. Universidad Nacional de Cuyo. Mendoza.
 
97.
Puebla, G.G, Mego, N., Prámparo, M.B., 2012. Asociación de briófitas de la Formación La Cantera, Aptianotardio, Cuenca de San Luis, Argentina. Ameghiniana 49, 217–229. https://doi.org/10.5710/amgh.v....
 
98.
Puebla, G.G., Iglesias, A., Gómez, M.A., Prámparo, M.B., 2017. Fossil record of Ephedra in the Lower Cretaceous (Aptian), Argentina. Journal of Plant Research 130(6), 975–988. https://doi.org/10.1007/s10265....
 
99.
Quattrocchio, M.E., Volkheimer, W., Borrromei, A.M., Martinez, M.A., 2011. Changes of the palynobiotas in the Mesozoic and Cenozoic of Patagonia: a review. Biological Journal of the Linnean Society 103(2), 380–396. https://doi.org/10.1111/j.1095....
 
100.
Renzaglia, K.S., Schuette, S., Duff, R.J., Ligrone, R., Shaw, A.J., Mishler, B.D., Duckett, J.G., 2007. Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist 110, 179–213. https://doi.org/10.1639/0007-2....
 
101.
Rivarola, D., Spalletti, L., 2006. Modelo de sedimentación continental para el rift Cretácico de la Argentina central. Ejemplo de la Sierra de las Quijadas, San Luis. Revista de la Asociación Geológica Argentina 61, 63–80.
 
102.
Rothwell, G.W., Stockey, R.A., Mapes, G., Hilton, J., 2011. Structure and relationships of the Jurassic conifer seed cone Hughmillerites juddii gen. et comb. nov.: implications for the origin and evolution of Cupressaceae. Review of Palaeobotany and Palynology 164(1), 45–59. https://doi.org/10.1016/j.revp....
 
103.
Rydin, C., Mohr, B., Friis, E.M., 2003. Cratonia cotyledon gen.et sp.nov., A unique Cretaceous Seedling related to Welwitschia. Proceedings; Biological Sciences, Supplement: Biology Letters, 29–32. https://doi.org/10.1098/rsbl.2....
 
104.
Rydin, C., Pedersen, K.R., Crane, P.R., Friis, E.M., 2006. Former diversity of Ephedra (Gnetales): Evidence from Early Cretaceous seeds from Portugal and North America. Annals of Botany 98, 123–140. https://doi.org/10.1093/aob/mc....
 
105.
Salisbury, E.J., 1942. The reproductive capacity of plants. G. Bell and Sons, LTD. London.
 
106.
Scotese, C.R., Boucot, A.J., McKerrow, W.S., 1999. Gondwanan palaeogeography and paleoclimatology. Journal of African Earth Sciences 28(1), 99–114. https://doi.org/10.1016/s0899-....
 
107.
Sha, J., 2007. Cretaceous stratigraphy of northeast China: non-marine and marine correlation. Cretaceous Research 28(2), 146–170. https://doi.org/10.1016/j.cret....
 
108.
Shipley, B., Dion, J., 1992. The allometry of seed production in herbaceous angiosperms. The American Naturalist 139(3), 467–483. https://doi.org/10.1086/285339.
 
109.
Silvertown, J.W., 1981. Seed size, life span, and germination date as co-adapted features of plant life history. American Naturalist 118, 860–864. https://doi.org/10.1086/283876.
 
110.
Sims, H.J., 2012. The evolutionary diversification of seed size: using the past to understand the present. Evolution 66(5), 1636–1649. https://doi.org/10.1111/j.1558....
 
111.
Skog, J.E., 2001. Biogeography of Mesozoic leptosporangiate ferns related to extant ferns. Brittonia 53(2), 236–269. https://doi.org/10.1007/bf0281....
 
112.
Souza, J.M., Iannuzzi, R., 2012. Dispersal Syndromes of fossil Seeds from the Lower Permian of Paraná Basin, Rio Grande do Sul, Brazil. Anais da Academia Brasileira de Ciências 84(1), 43–68. https://doi.org/10.1590/s0001-....
 
113.
Spencer, A.R., Mapes, G., Bateman, R.M., Hilton, J., Rothwell, G.W., 2015. Middle Jurassic evidence for the origin of Cupressaceae: a paleobotanical context for the roles of regulatory genetics and development in the evolution of conifer seed cones. American Journal of Botany 102(6), 942–961. https://doi.org/10.3732/ajb.15....
 
114.
Stevenson, R.A., Evangelista, D., Looy, C.V., 2015. When conifers took flight: a biomechanical evaluation of an imperfect evolutionary takeoff. Paleobiology 41(2), 205–225.
 
115.
Stockey, R.A., Kvaček, J., Hill, R.S., Rothwell, G.W., Kvaček, Z., 2005. The fossil record of Cupressaceae s. lat. A monograph of Cupressaceae and Sciadopitys 54, p. 68.
 
116.
Sun, G., Dilcher, D.L., 2002. Early angiosperms from the Lower Cretaceous of Jixi, eastern Heilongjiang, China. Review of Palaeobotany and Palynology 121(2), 91–112. https://doi.org/10.1016/s0034-....
 
117.
Sun, G., Dilcher, D.L., Zheng, S., Zhou, Z., 1998. In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science 282 (5394), 1692–1695. https://doi.org/10.1126/scienc....
 
118.
Taylor, T.W., Hickey, L.J., 1990. An Attached leaves and lowers: implications origin. Science 247, 702–704.
 
119.
Taylor, E.L., Taylor, T.N., Krings, M., 2009. Paleobotany: the biology and evolution of fossil plants. 2° Edition. Academic Press, New York, USA.
 
120.
Thomas, B.A., Spicer, R.A., 1986. The Evolution and Palaeobiology of Land Plants: Croom Helm, London.
 
121.
Tiffney, B.H., 1984. Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis. Annals of the Missouri Botanical Garden 71, 551–576. https://doi.org/10.2307/239903....
 
122.
Tiffney, B.H., 2004. Vertebrate dispersal of seed plants through time. Annual Review of Ecology, Evolution and Systematics 35, 1–29. https://doi.org/10.1146/annure....
 
123.
Tosolini, A.M.P., McLoughlin, S., Wagstaff, B.E., Cantrill, D.J., Gallagher, S.J., 2015. Cheirolepidiacean foliage and pollen from Cretaceous highlatitudes of southeastern Australia. Gondwana Research 27(3), 960–977. https://doi.org/10.1016/j.gr.2....
 
124.
Traverse, A., 1988. Plant evolution dances to a different beat: plant and animal evolutionary mechanisms compared. Historical Biology 1(4), 277–301. https://doi.org/10.1080/089129....
 
125.
Vakhrameev, V.A., 1991 Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge University Press, Cambridge.
 
126.
Vanderpoorten, A., Goffinet, B., 2009. Introduction to bryophytes. Cambridge University Press.
 
127.
Van Konijnenburg-Van Cittert, J.H.A., 2002. Ecology of some late Triassic to early Cretaceous ferns in Eurasia. Review of Palaeobotany and Palynology 119(1–2), 113–124. https://doi.org/10.1016/s0034-....
 
128.
Vaughan, J.G., 1970. The structure and utilization of oil seeds. Champan and Hall, London.
 
129.
Villar De Seoane, L., Archangelsky, S., 2014. Estudios palinológicos del Grupo Baqueró (Cretácico Inferior), provincia de Santa Cruz, Argentina. X. Polen de Gymnospermae y Apéndice Final. Revista del Museo Argentino de Ciencias Naturales nueva serie 16(1), 33–44. https://doi.org/10.22179/revma....
 
130.
Wang, Q., 2011. Proposal to conserve the name Carpolithus with that spelling (fossil Spermatopsida). Taxon 60(1), 241–242. https://doi.org/10.1002/tax.60....
 
131.
Wang, X., Zheng, S., 2010. Whole fossil plants of Ephedra and their implications on the morphology, ecology and evolution of Ephedraceae (Gnetales). Chinese Science Bulletin 55(15), 1511–1519. https://doi.org/10.1007/s11434....
 
132.
Wang, Y., Olsen, P.E., Sha, J., Yao, X., Liao, H., Pan, Y., Kinney, S., Zhang, X., Rao, X., 2016. Stratigraphy, correlation, depositional environments, and cyclicity of the Early Cretaceous Yixian and Jurassic–Cretaceous Tuchengzi formations in the Sihetun area (NE China) based on three continuous cores. Palaeogeography, Palaeoclimatology, Palaeoecology 464, 110–133. https://doi.org/10.1016/j.pala....
 
133.
Westoby, M., Leishman, M., Lord, J., 1996. Comparative ecology of seed size and dispersal. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351(1345), 1309–1318. https://doi.org/10.1098/rstb.1....
 
134.
Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J., 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33(1), 125–159. https://doi.org/10.1146/annure....
 
135.
Wing, S.L., Tiffney, B.H., 1987. The reciprocal interaction of angiosperm evolution and tetrapod herbivory. Review of Palaeobotany and Palynology 50(1–2), 179–210. https://doi.org/10.1016/0034-6....
 
136.
Wing, S.L., Boucher, L.D., 1998. Ecological aspects of the Cretaceous flowering plant radiation. Annual Review of Earth and Planetary Sciences 26(1), 379–421. https://doi.org/10.1146/annure....
 
137.
Wu, M., Zhang, W., Guo, P., Zhao, Z., 2014. Identification of seven Zingiberaceous species based on comparative anatomy of microscopic characteristics of seeds. Chinese Medicine 9(10), 1–7. https://doi.org/10.1186/1749-8....
 
138.
Yang, Y., 2011. Cuticular Diversity of the Seed Outer Envelope in Ephedra (Ephedraceae) with A Discussion on Its Systematic Significance. Journal of Tropical and Subtropical Botany 19(1), 1–15.
 
139.
Zander, A., 1979. The psychology of group processes. Annual Review of Psychology 30, 417–451.
 
eISSN:2082-0259
ISSN:0001-6594