Three millennia of vegetation and environmental dynamics in the Lagunas de Mojanda region, northern Ecuador
 
More details
Hide details
1
Herbario QCA, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, P.O. Box: 17-01-2184, Quito, Ecuador
2
University of Göttingen, Department of Palynology and Climate Dynamics, Untere Karspüle 2, 37073 Göttingen, Germany
Online publication date: 2017-12-19
Publication date: 2017-12-19
 
Acta Palaeobotanica 2017; 57(2): 407–421
 
ABSTRACT
The pollen record from Lagunas de Mojanda, located at 3748 m a.s.l. (northern Ecuadorian Andes) reflects the vegetation and climate dynamics for the last ca 3400 cal yr BP. Páramo vegetation has been the main vegetation type since the beginning of the record. At Lagunas de Mojanda, from the last ca 3400 to 2200 cal yr BP, grass páramo was well represented mainly by Poaceae (40%) and the occurrence of Valeriana (5%), while montane forest taxa were poorly represented and subpáramo taxa were rare. The vegetation composition suggests cool and humid conditions. Between ca 2200 and ca 1300 cal yr BP, montane rainforest and subpáramo taxa had a higher presence but páramo taxa remained the main vegetation type in the study area, suggesting cool climatic conditions. From ca 1300 to ca 500 cal yr BP, páramo vegetation remained stable, with higher presence of Phlegmariurus and Isoetes, suggesting cool and humid conditions. The last ca 500 cal yr BP generally show lower frequency of montane rainforest and subpáramo taxa. Páramo vegetation reached the highest share, with the presence of Poaceae, Plantago and Ranunculus suggesting a trend of peat bog drying. Fires were present during the whole record, perhaps human-caused, but the study area does not show great disturbance except from ca 1300 to 500 cal yr BP, a period of an evident higher influx of charcoal particles coincidentally with nearby ancient human occupation.
 
REFERENCES (69)
1.
ABBOTT M.B., WOLFE B.B., ARAVENA R., WOLFE A.P. & SELTZER G.O. 2000. Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia. Quat. Sci. Rev., 194: 123–138.
 
2.
ARGOLLO J. & MOURGUIART P. 2000. Late Quaternary climate history of the Bolivian Altiplano. Quat. Int., 72: 37–51.
 
3.
BAKKER J., MOSCOL M. & HOOGHIEMSTRA H. 2008. Holocene environmental change at the upper forest line in northern Ecuador. The Holocene, 18: 877–893.
 
4.
BELL R. 1971. Investigation of the Inga Complex and Preceramic Occupations of Highland Ecuador. Final report to the National Science Foundation.
 
5.
BOSMAN A., HOOGHIEMSTRA H. & CLEEF A. 1994. Holocene mire development and climatic change from a high Andean Plantago rigida cushion mire. The Holocene, 43: 233–243.
 
6.
BRUNSCHÖN C. & BEHLING H. 2009. Late Quaternary vegetation, fire and climate history reconstructed from two cores at Cerro Toledo, Podocarpus National Park, southeastern Ecuadorian Andes. Quat. Res., 72: 388–399.
 
7.
BRUNSCHÖN C., HABERZETTL T. & BEHLING H. 2010. High resolution studies on vegetation succession, hydrological variations, anthropogenic impact and genesis of a subrecent lake in southern Ecuador. Veg. Hist. Archaeobot., 19: 191–206.
 
8.
BUSH M.B. & RIVERA R. 2001. Reproductive ecology and pollen representation among neotropical trees. Global Ecol. Biogeogr., 10: 359–367.
 
9.
BUYTAERT W., CÉLLERI R., DE BIÈVRE B., CISNEROS F., WYSEURE G., DECKERS J. & HOFSTEDE R. 2006. Human impact on the hydrology of the Andean páramos. Earth-Sci. Rev., 79: 53–72.
 
10.
CASTAÑO C. 2002. Páramos y ecosistemas alto andinos de Colombia en condición hotspot y global climatic tensor. IDEAM, Bogotá.
 
11.
CHEPSTOW-LUSTY A.J., BENNETT K.D., SWISTUR V.R. & KENDALL A. 1996. 4000 years of human impact and vegetation change in the central Peruvian Andes – with events parallelling the Maya record? Antiquity, 70: 824–833.
 
12.
CIDAP. 2007. La Cultura Popular en el Ecuador. Tomo XII, Pichincha. CIDAP. Cuenca.
 
13.
COLINVAUX PA., OLSON K. & LIU K.B. 1988. Late-glacial and Holocene pollen diagrams from two endorheic lakes of the Inter-Andean plateau of Ecuador. Rev. Palaeobot. Palynol., 55: 83–99.
 
14.
COLINVAUX P.A. 1997. Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon. Quat. Res., 48: 69–78.
 
15.
CUESTA F., MURIEL P., LLAMBÍ L.D., HALLOY S., AGUIRRE N., BECK S., CARILLA J., MENESES R.I., CUELLO S., GRAU A., GÁMEZ L.E., IRAZÁBAL J., JÁCOME J., JARAMILLO R., RAMÍREZ L., SAMANIEGO N., SUÁREZ-DUQUE D., THOMPSON N., TUPAYACHI A., VIÑAS P., YAGER K., BECERRA M.T., PAUL H. & GOSLING W.D. 2017. Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography, 40: 001–014.
 
16.
DI PASQUALE G., MARZIANO M., IMPAGLIAZZO S., LUBRITO C., DE NATALE A. & BADER M. 2008. The Holocene treeline in the northern Andes (Ecuador): First evidence from soil charcoal. Palaeogeogr. Palaeoclim. Palaeoecol., 259: 17–34.
 
17.
ECOCIENCIA. 2008. Plan de manejo y desarrollo de la zona de Mojanda. Proyecto Páramo Andino. Ecociencia. Quito.
 
18.
EMCK P. 2007. A climatology of south Ecuador – with special focus on the major Andean ridge as Atlantic–Pacific climate divide Friedrich-Alexander-Universität, Erlangen-Nürnberg (PhD Thesis).
 
19.
FÆGRI K. & VAN DER PIJL L. 1979. The Principles of Pollination Ecology, 3rd Revised Edition. Pergamon Press, Oxford.
 
20.
FÆGRI K. & IVERSEN J. 1989. Textbook of Pollen Analysis, 4th ed. Wiley, Chichester.
 
21.
FINSINGER W., TINNER W. & HU F. 2008. Rapid and accurate estimates of microcharcoal content in pollen slides: 121–124. In: G. Fiorentino & D. Magri (eds), Charcoals from the past: cultural and palaeoenvironmental implications. Proceedings of the Third International Meeting of Anthracology, Cavallino-Lecce (Italy), June 28th-July 1st 2004. Archaeopress, Oxford, UK; available from Hadrian Press.
 
22.
FEELEY K.J. & SILMAN M.R. 2010. Land use and climate change effects on population size and extinction risk of Andean plants. Global Change Biology, 16: 3215–3222.
 
23.
GARREAUD R.D. 2009. The Andes climate and weather. Advances in Geosciences, 22: 3–11.
 
24.
GOLDBERG A., MYCHAJLIW A.M. & HADLY E.A. 2016. Post-invasion demography of prehistoric humans in South America. Nature, 532: 232–235.
 
25.
GOSLING W.D., BUSH M.B., HANSELMAN J.A. & CHEPSTOW-LUSTY A. 2008. Glacial-Interglacial changes in moisture balance and the impact on vegetation in the southern hemisphere tropical Andes (Bolivia/Peru). Palaeogeogr. Palaeoclimatol. Palaeoecol., 259(1): 35–50.
 
26.
GRIMM E.C. 1987. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Comput. Geosci., 13: 13–35.
 
27.
 HALLOY S. & MARK A. 2003. Climate-change effects on alpine plant biodiversity: A New Zealand perspective on quantifying the threat. Arct. Antarct. Alp. Res., 35: 248–254.
 
28.
HANSEN B.C.S. 1995. A review of Late Glacial pollen records from Ecuador and Peru with reference to the Younger Dryas event. Quat. Sci. Rev., 14: 853–865.
 
29.
HANSEN B.C.S. & RODBELL D.T. 1995. A Late-Glacial/Holocene pollen record from the eastern Andes of northern Peru. Quat. Res., 44: 216–227.
 
30.
HANSEN B.C.S., RODBELL D.T., SELTZER G.O., LEÓN B., YOUNG K.R. & ABBOTT M. 2003. Late-glacial and Holocene vegetation history from two sides in the western Cordillera of southwestern Ecuador. Palaeogeogr. Palaeoclimatol. Palaeoecol., 194: 79–108.
 
31.
HOFSTEDE R., GROENENDIJK J., COPPUS R., FEHSE J. & SEVINK J. 2002. Impact of Pine Plantations on Soils and Vegetation in the Ecuadorian High Andes. Mt. Res. Dev., 22: 159–167.
 
32.
HOFSTEDE R., SEGARRA P. & MENA P.V. 2003. Los Páramos del Mundo. Global Peatland Initiative/NC-IUCN/EcoCiencia, Quito.
 
33.
HOOGHIEMSTRA H. 1984. Vegetation and climatic history of the High Plain of Bogota, Colombia: a continuous record of the last 3,5 million years. Dissertationes Botanicae 79, Cramer, Vaduz, 368 pp.
 
34.
HUGHES C. & EASTWOOD R. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. PNAS, 103: 10334–10339.
 
35.
IEE (Instituto Espacial Ecuatoriano), SIGAGRO-MAGAP (Dirección del Sistema de Información Geográfica y Agropecuaria-Ministerio de Agricultura). 2013. Memoria Técnica. Proyecto Generación de geo-información para la gestión del territorio a nivel nacional escala 1:25000. Cantón Pedro Moncayo. Clima e Hidrología.
 
36.
JACOBSON J.G.L. & BRADSHAW R.H.W. 1981. The selection of sites for paleovegetational studies. Quat. Res., 16: 80–96.
 
37.
JANTZ N. & BEHLING H. 2012. A Holocene environmental record reflecting vegetation, climate, and fire variability at the Páramo of Quimsacocha, southwestern Ecuadorian Andes. Veg. Hist.Archaeobot., 21: 169–185.
 
38.
JANTZ N., HOMEIER J., LEÓN-YÁNEZ S., MOSCOSO A. & BEHLING H. 2013. Trapping pollen in the tropics – Comparing modern pollen rain spectra of different pollen traps and surface samples across Andean vegetation zones. Rev. Palaeobot.Palynol., 193: 57–69.
 
39.
JØRGENSEN P.M. & LEÓN-YÁNEZ S. (eds). 1999. Catalogue of the Vascular Plants of Ecuador. Monogr. Syst. Bot. Missouri Botanical Garden 75, I–VIII, 1–1182.
 
40.
LAEGAARD S. 1992. Influence of fire in the grass páramo vegetation of Ecuador: 151–170. In: Balslev H. & Luteyn J.L. (eds), Páramo. An Andean ecosystem under human influence. Academic Press, London.
 
41.
LEÓN-YÁNEZ S., VALENCIA R., PITMAN N., ENDARA L., ULLOA C. & NAVARRETE H. 2011. Libro rojo de las plantas endémicas del Ecuador, Segunda Edición. Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito.
 
42.
MARCHANT R.A., BEHLING H., BERRIO J.C., CLEEF A.M., DUIVENVOORDEN J., HOO­GHIEM­STRA H., KUHRY P., MELIEF A.B.M., VAN GEEL B., VAN DER HAMMEN T., VAN REENEN G. & WILLE M. 2001. Mid- to late Holocene pollen based biome reconstructions for Colombia: a regional reconstruction. Quat. Sci. Revi., 20: 1289–1308.
 
43.
MARCHANT R., ALMEIDA L., BEHLING H., BERRIO J.C., BUSH M., CLEEF A., DUIVENVOORDEN J., KAPPELLE M., DE OLIVEIRA P., DE OLIVEIRA-FILHO A.T, LOZANO-GARCÍA S., HOOGHIEMSTRA H., LEDRU M.P., LUDLOW-WIECHERS B., MARKGRAF V., MANCINI V., PAEZ M., PRIETO A., RANGEL O. & SALGADO-LABOURIAU M.L. 2002. Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database. Rev. Palaeobot. Palynol., 121: 1–75.
 
44.
MARCHANT R. & HOOGHIEMSTRA H. 2004. Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth-Sci. Rev., 66: 217–260.
 
45.
MUTKE J. & BARTHLOTT W. 2005. Patterns of vascular plant diversity at continental to global scales. Biol. Skr., 55: 521–531.
 
46.
NIEMANN H. & BEHLING H. 2008. Late Quaternary vegetation, climate and fire dynamics inferred from the El Tiro record in the southeastern Ecuadorian Andes. J. Quat. Sci., 23: 203–212.
 
47.
NIEMANN H. & BEHLING H. 2010. Late Holocene environmental change and human impact inferred from three soil monoliths and the Laguna Zurita multi-proxi record in the southeastern Ecuadorian Andes. Veg. Hist. Archaeobot., 19: 1–15.
 
48.
NIEMANN H., HABERZETTL T. & BEHLING H. 2009. Holocene climate variability and vegetation dynamics inferred from the (11,700 cal yr BP) Laguna Rabadilla de Vaca sediment record in the southeastern Ecuadorian Andes. The Holocene, 19: 307–316.
 
49.
ORTUÑO T., LEDRU M.P., CHEDDADI R., KUENTZ A., FAVIER C. & BECK S. 2011. Modern pollen rain, vegetation and climate in Bolivian ecoregions. Rev. Palaeobot. Palynol., 165: 61–74.
 
50.
POHLE P. 2008. The people settled around Podocarpus National Park: 25–36. In: Beck E., Bendix J., Kottke I., Makeschin F., Mosandl R. (eds). Gradients in a tropical mountain ecosystem of Ecuador. Ecol Stud 198. Springer Verlag, Berlin, Heidelberg.
 
51.
ROMAN-CUESTA R.M., SALINAS N., ASBJORN­SEN H., OLIVERAS I., HUAMAN V., GUTIERREZ Y., PUELLES L., KALA J., YABAR D., ROJAS M., ASTETE R., JORDAN D.Y., SILMAN M., MOSANDL R., WEBER M., STIMM B., GÜNTER S., KNOKE T. & MALHI Y. 2011. Implications of fires on carbon budgets in Andean cloud montane forest: the importance of peat soils and tree resprouting. For. Ecol. Manage., 261: 1987–1997.
 
52.
REESE C. & Liu K.-B. 2005. A modern pollen rain study from the central Andes region of South America. J. Biogeogr., 32: 709–718.
 
53.
ROBIN C., HALL M., JIMÉNEZ M., MONZIER M. & ESCOBAR P. 1997. Mojanda volcanic complex (Ecuador): development of two adjacent contemporaneous volcanoes with contrasting eruptive styles and magmatic suites. J. S. Am. Earth Sci., 10: 345–359.
 
54.
ROBIN C., EISSEN J.P., SAMANIEGO P., MARTIN H., HALL M. & COTTEN J. 2009. Evolution of the late Pleistocene Mojanda-Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. Bulletin of Volcanology, 71: 233–258.
 
55.
SADORI L. & GIARDINI M. 2007. Charcoal analysis, a method to study vegetation and climate of the Holocene: The case of Lago di Pergusa (Sicily, Italy). Geobios, 40: 173–180.
 
56.
SARMIENTO F.O. 2002. Anthropogenic change in the landscapes of highland Ecuador. Geogr. Rev., 92: 213–234.
 
57.
SKLENÁŘ P. & BALSLEV H. 2005. Superpáramo plant species diversity and phytogeography in Ecuador. Flora, 200: 416–433.
 
58.
UGALDE M.F. 2015. Cochasquí revisitado. Historiografía, Investigaciones Recientes y Perspectiva. Gobierno Autónomo descentralizado de la Provincia de Pichincha. Colección Latitud 0º. Quito, Ecuador.
 
59.
URREGO D.H., NICCUM B.A., LA DREW C.F., SILMAN M.R. & BUSH M.B. 2011. Fire and drought as drivers of early Holocene tree line changes in the Peruvian Andes. J. Quat. Sci., 26: 28–36.
 
60.
VALENCIA B.G., MATTHEWS-BIRD F., URREGO D.H., WILLIAMS J.J., GOSLING W.D. & BUSH M. 2016. Andean microrefugia: testing the Holocene to predict the Anthropocene. New Phytologist, 212: 510–522.
 
61.
VAN DER HAMMEN T., NOLDUS G. & SALAZAR E. 2003. Un diagrama de polen del Pleistoceno final y Holoceno de Mullumica. Maguaré, 17: 247–259.
 
62.
VELASQUEZ C.A. 2005. Paleoecología de alta resolución del Holoceno tardío en el Páramo de Frontino. PhD Thesis, Universidad Nacional de Colombia, Bogotá. Also published in Hooghiemstra, H., editor, The Quaternary of Colombia 30, 199 pp.
 
63.
VILLOTA A., LEÓN-YÁNEZ S. & BEHLING H. 2012. Vegetation and environmental dynamics in the Páramo of Jimbura region in the southeastern Ecuadorian Andes during the late Quaternary. J. S. Am. Earth Sci., 40: 85–93.
 
64.
VILLOTA A., LEÓN-YÁNEZ S. & BEHLING H. 2014. Mid- and late Holocene vegetation and environmental dynamics in the Llanganates National Park, Anteojos Valley, central Ecuadorian Andes. Palynology, 39: 350–361.
 
65.
VUILLE M., BRADLEY R. & KEIMIG F.1999. Climate Variability in the Andes of Ecuador and Its Relation to Tropical Pacific and Atlantic Sea Surface Temperature Anomalies. J. Clim., 13: 2520–2535.
 
66.
VUILLE M. & BRADLEY RS. 2000. Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys. Res. Lett., 27: 3885–3888.
 
67.
WENINGER B., JÖRIS O. & DANZEGLOCKE U. 2004. Calpal: The Cologneradiocarbon Calibration and Palaeoclimate research package. Avaliable from: http:// www.calpal.de. Accessed May 2017.
 
68.
WENG C., BUSH M., CURTIS J., KOLATA A., DILLEHAY T. & BINFORD M. 2006. Deglaciation and Holocene climate change in the western Peruvian Andes. Quat. Res., 66: 87–96.
 
69.
WILLE M., HOOGHIEMSTRA H., HOFSTEDE R., FEHSE J. & SEVINK J. 2002. Upper forest line reconstruction in a deforested area in northern Ecuador based on pollen and vegetation analysis. J. Trop. Ecol., 18: 409–440.
 
 
CITATIONS (3):
1.
Liverwort diversity in Polylepis pauta forests of Ecuador under different climatic conditions
S. Gradstein, Susana León-Yánez
Neotropical Biodiversity
 
2.
New land in the Neotropics: a review of biotic community, ecosystem, and landscape transformations in the face of climate and glacier change
Francisco Cuesta, Luis Llambí, Christian Huggel, Fabian Drenkhan, William Gosling, Priscilla Muriel, Ricardo Jaramillo, Carolina Tovar
Regional Environmental Change
 
3.
The Medieval Climate Anomaly in South America
Sebastian Lüning, Mariusz Gałka, Florencia Bamonte, Felipe Rodríguez, Fritz Vahrenholt
Quaternary International
 
eISSN:2082-0259
ISSN:0001-6594