Comparative palynology of Macrotermes sp. mounds and Vespula vulgaris nests on the University of Lagos campus, Akoka: preliminary study
 
More details
Hide details
1
Laboratory of Paleobotany/ Palynology, Department of Botany, Faculty of Science, University of Lagos, Akoka
2
Department of Biology, University of Victoria, British Columbia, Canada
3
Entomology Unit, Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos
Online publication date: 2017-12-19
Publication date: 2017-12-19
 
Acta Palaeobotanica 2017; 57(2): 397–406
 
ABSTRACT
In order to assess the environmental indicator potential of wasp nests and termite mounds, the palynomorph content of three randomly selected Macrotermes sp. mounds (termitaria) and two Vespula vulgaris nests collected on the University of Lagos campus were examined. Palynological analysis showed the presence of 298 well-preserved palynomorphs showing characteristic morphological features. The recovered palynomorphs included pollen, pteridophyte spores and fungal spores, along with insect parts (106), diatoms (7) and a protist (1). The pollen assemblage of termite mounds comprised 78 pollen and pteridophyte spores, with Poaceae and Arecaceae pollen as dominants. In the wasp nest the pollen assemblage comprised 28 pollen and spore taxa, with Poaceae and Arecaceae pollen also dominant. Both mounds and nests had, besides diatoms, six pollen and spore taxa: Poaceae, Amaranthaceae, Pteridophyte spores, Arecaceae, Raffia sp. and Rhizophora sp. Vegetational grouping of the recovered pollen and spores indicated five phytoecological groups: secondary forest, mangrove swamp forest, freshwater, open vegetation and Poaceae. In statistical analyses, termite mounds had a higher species richness value (2.08 as compared to 1.99 from the wasp nests), while the wasp nests had a higher species diversity value (0.997 as compared to 0.845 from the termite mounds). Pollen analyses of the termite mounds and wasp nests suggest that both could be useful tools in environmental studies. This is the first attempt to evaluate the potential of termite mounds and wasps nest as natural pollen accumulators in Nigeria. The results suggest new possibilities for the use of the pollen records preserved in termite mounds and wasp nests for environmental studies.
 
REFERENCES (43)
1.
ADEONIPEKUN P.A., SOWUNMI M.A. & RICHARDS K. 2017. A new Late Miocene to Pleistocene palynomorph zonation for the western offshore Niger Delta. Palynology, 41(1–2): 2–16. doi: 10.1080/01916122.2015.1107652.
 
2.
AKRE R.D., GARNETT W.B., MACDONALD J.F., GREENE A. & LANDOLT P. 1976. Behaviour and colony development of Vespula pensylvanica and V. atropilosa (Hymenoptera: Vespidae). J. Kans. Entomol. Soc., 49(1): 63–84.
 
3.
ALAMU O.T., AMAO A.O., NWOKEDI C.I., OKE O.A. & LAWAL I.O. 2013. Diversity and nutritional status of edible insects in Nigeria: A review. Int. J. Biodivers. Conserv., 5(4): 215–222.
 
4.
ANDERSEN S.T. 1986. Palaeoecological studies of terrestrial soils. 1. In: Handbook of Holocene palaeoecology and palaeohydrology (ed. B.E. Berglund), pp. 165–177. John Wiley & Sons, New York.
 
5.
ANYAKORA C., EHIANETA T. & UMUKORO O. 2013. Heavy metal levels in soil samples from highly industrialized Lagos environment. Afric. J. Environ. Sci. Tech., 7(9): 917–927.
 
6.
ARNOLD V.H. 2017. Cultural significance of termites in sub-Saharan Africa. J. Ethnobiol. Ethnomed., 13: 8–20.
 
7.
AUBERT H. & PINTA M. 1977. Trace Elements in Soils. Volume 7, 1st Edition. Elsevier Science. 394 pp.
 
8.
BRUNO G., JOHANNES L. & MAIKE F. 2001. Carbon and nitrogen mineralization in cultivated and natural savanna soils of Northern Tanzania. Biol. Fertility Soil, 33: 301–309.
 
9.
CATTO N.R. 1985. Hydrodynamic distribution of palynomorphs in a fluvial succession Yukon. Can. J. Earth Sci., 22: 1552–1556.
 
10.
DIMBLEBY G.W. 1957. Pollen analysis of terrestrial soils. New Phytologist, 56: 12–28.
 
11.
DIMBLEBY G.W. 1961. Soil pollen analysis. European J. Soil Sci., 12: 1–11.
 
12.
DIBOG L., EGGLETON P. & FORZI F. 1998. The seasonality of a soil termite assemblage in a humid tropical forest. Mbalmayo, Southern Cameroon. J. Trop. Ecol., 14: 841–850.
 
13.
ERDTMAN G. 1960. The acetolysis method – A revised description. Svensk Botanisk Tidskrift, 54: 561–564.
 
14.
EZEJIOFOR T.I.N., EZEJIOFOR A.N., UDEBUANI A.C., EZEJI E.U., AYALOGBU E.A., AZUWUIKE C.O., ADJERO L.A., IHEJIRIKA C.E., UJOWUNDU C.O., NWAOGU L.A. & NGWOGU K.O. 2013. Environmental metals pollutants load of a densely populated and heavily industrialized commercial city of Aba, Nigeria. J. Toxicol. Environ. Health, Sciences, 5(1): 1–11.
 
15.
FALL P.L. 1987. Pollen taphonomy in a canyon stream. Quaternary Res., 28: 393–406.
 
16.
FEDERAL ENVIRONMENTAL PROTECTION AGENCY (FEPA) Act. 1991. Guidelines and standards for Industrial effluent, gaseous emissions and hazardous waste management in Nigeria. National Environmental Protection Regulations, Federal Republic of Nigeria. Supplement to Official Gazette Extraordinary – Part B., 78(42): B15–31.
 
17.
FOLGARAIT J.P. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers. Conserv., 7: 1221–1244.
 
18.
FUNCH R.R. 1985. A casa dos “bate-cabeça”. Ciência Hoje, 4(21): 11.
 
19.
GOSLING W.D., MILLER S.C. & LIVINGSTONE A.D. 2013. Atlas of the tropical West African pollen flora. Rev. Palaeobot. Palynol., 199: 1–135.
 
20.
HAHN J., JESSE L. & LIESCH P. 2015. Social wasps and bees in the upper Midwest. http://www.exte nsion.umn.edu/garden/insects/f.... Accessed March 2017.
 
21.
HARRINGTON J.M., LEIPPE M. & ARMSTRONG P.B. 2008. Epithelial immunity in a marine invertebrate: a cytolytic activity from a cuticular secretion of the American horseshoe crab, Limulus polyphemus. Mar. Biol., 153: 1165–1171.
 
22.
HOROWITZ A. 1992. Palynology of Arid Lands. Amsterdam, Elsevier. 370 pp.
 
23.
KAMBHAMPATI S. & EGGLETON P. 2000. Phylogenetics and Taxonomy: 1–24. In: Abe T., Higashi M. & Bignell D.E. (eds), Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer, Academic, Dordrecht.
 
24.
KEMABONTA K.A. & ADEREMI A.O. 2014. Post environmental impact assessment and toxicological evaluation of major emissions on selected fauna of the AP filling Station, University of Lagos, Lagos. Nigeria. Proc. Anal. Tech., 10(1): 1–16.
 
25.
KEMABONTA K.A. & BALOGUN S.A. 2014. Species richness, diversity and relative abundance of termites (insecta: isopteran) in the University of Lagos, Lagos, Nigeria. FUTA J. Res. Sci., 2: 188–197.
 
26.
KRISHNA K., GRIMALDI DA., KRISHNA V. & ENGEL M.S. 2013. Treatise on the Isoptera of the world. Bull. Am. Mus. Nat. Hist., 377: 1–2704.
 
27.
LEE K.E. & WOOD T.G. 1971. Termites and Soils. Academic Press London and New York. 251pp.
 
28.
MALAKA S.L.O. 2016. Insects and the economy: Are termites devourers or builders? Acumen Integrated Concepts, Nigeria. 131pp.
 
29.
MCGLONE M.S. & WILMSHURST J.M. 2005. Origin of pollen and spores in surface lake sediments: comparison of modern palynomorph assemblages in moss cushions, surface soils and surface lake sediments. Rev. Palaeobot. Palynol., 136: 1–15.
 
30.
NOBRE T. & AANEN D.K. 2012. Fungiculture or termite husbandry? The ruminant hypothesis. Insects, 3(1): 307–323.
 
31.
NODZA I.G., ONUMINYA T.O. & OGUNDIPE O.T. 2014. A checklist of tree species growing on Akoka campus of University of Lagos, Nigeria. Int. J. Sci., 3(3): 1021–1034.
 
32.
NOIROT C.H. 1970. The nests of termites 2: 73–125. In: Krishner K. & Weesner M. (eds), Biology of termites. Academic Press, New York and London.
 
33.
NWANKWO D.I.C., ADESALU T.A., OLABODE R.J., OSIEGBU G.O. & OWOSENI T.I. 2003. Additions to a preliminary checklist of planktonic algae in Lagos lagoon, Nigeria. J. Sci. Tech. and Envir., 3(1–2): 8–12.
 
34.
OLIVEIRA P.P., FUNCH R.R. & DOS SANTOS F. 2014. First pollen survey of murundus in the Chapada Diamantina region of the state of Bahia, Brazil. Acta Bot. Bras., 28(4): 638–640.
 
35.
ONADEKO A.B., EGONMWAN R.I. & SALIU J.K. .2013. Biodiversity change: Preliminary monitoring of anuran species in selected vegetation sites in south-western Nigeria. West Afr. J. App. Ecol., 21(1): 69–85.
 
36.
PETERS R.S., KROGMANN L., MAYER C., DONATH A., GUNKEL S., MEUSEMANN K., KOZLOV A., PODSIADLOWSKI L., PETERSEN M., LANFEAR R., DIEZ P.A., HERATY J., KJER K.M., KLOPFSTEIN S., MEIER R., POLIDORI C., SCHMITT T., LIU S., ZHOU X., WAPPLER T., RUST J., MISOF B. & NIEHUIS O. 2017. Evolutionary history of the Hymenoptera. Curr. Biol., 27: 1013–1018.
 
37.
ROUBIK D.W. & MORENO P.J.E. 1991. Pollen and spores of Barro Colorado Island. Monogr. Syst. Bot., 36: 1–10.
 
38.
ROZZANNA E.C., REIS DE F., ALEXANDRE V., LAMARA S.P. & RÔMULO R.N.A. 2015. Edible and medicinal termites: a global overview. J. Ethnobiol. Ethnomed., 11: 29–36.
 
39.
SOWUNMI M.A. 1973. Pollen grains of Nigerian plants I. Woody Species. Grana, 13: 145–186.
 
40.
SOWUNMI M.A. 1995. Pollen flora of Nigeria II. Woody species. Grana, 34: 120–141.
 
41.
TSCHUDY R.H. & SCOTT R.A. 1969. Relationship of palynomorphs to sedimentation in aspects of palynology: 79–96. In: Aspects of Palynology (ed. R. H. Tschudy & R. A. Scott). John Wiley & Sons, New York.
 
42.
TRAVERSE A. 2008. Paleopalynology. 2nd ed. Dordrecht, Springer.
 
43.
WASPBANE 2014. Wasp feeding behaviour. https://www.waspbane.com/?page... Accessed March 2017.
 
eISSN:2082-0259
ISSN:0001-6594