ORIGINAL ARTICLE
 
KEYWORDS
ABSTRACT
The middle Paleocene Newell’s Nook biota of the Tongue River Member of the Fort Union Formation, southeastern Montana, is best known for its early Tiffanian mammalian fauna. Here, we describe an informative fruit and seed assemblage from this locality. These records refine the lower stratigraphic boundary for several plant genera known more widely from the Fort Union paleobotanical localities of less certain stratigraphic assignment within the upper Paleocene and help to fill a gap in our knowledge about the mid-Paleocene floristic composition of the Rocky Mountain and Great Plains region. Recognized plant taxa belong to the families Characeae, Taxaceae, Menispermaceae, Sabiaceae, Hamamelidaceae, Cercidiphyllaceae, Vitaceae, Cucurbitaceae and Juglandaceae. Several morphotypes remain uncertain as to familial position. Based on the dispersal syndromes of extant relatives, about 2/3 of these fruits were adaptive for animal dispersal, with hard seeds or endocarps covered by a fleshy outer layer. Dry seeds and nuts were likely part of the diet of small mammals. The Newell’s Nook locality presents another rare example of a North American Paleocene fruit and seed locality and provides insights to the dietary habits and ecology of the co-occurring fauna of this time.
 
REFERENCES (77)
1.
APG (Angiosperm Phylogeny Group), 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1–20.
 
2.
Appelhans, M.S., Reichelt, N., Groppo, M., Paetzold, C., Wen, J., 2018. Phylogeny and biogeography of the pan-tropical genus Zanthoxylum and its closest relatives in the proto-Rutaceae group (Rutaceae). Molecular Phylogenetics and Evolution 126, 31–44. https://doi.org/10.1016/j.ympe....
 
3.
Benedict, J.C., Pigg, K.B., DeVore, M.L., 2008. Hamawilsonia boglei gen. et sp. nov. (Hamamelidaceae) from the late Paleocene Almont flora of central North Dakota. International Journal of Plant Sciences 169(5), 687–700.
 
4.
Bicudo, C.E.D.M., Bueno, N.C., 2013. Characeae biomass: is the subject exhausted? In: Matovic, M.D., (ed.) Biomass Now – Sustainable Growth and Use. IntechOpen. https://doi.org/10.5772/54685.
 
5.
Bonis, A., Grillas, P., 2002. Deposition, germination and spatio-temporal patterns of charophyte propagule banks: a review. Aquatic Botany 72(3–4), 235–248. https://doi.org/10.1016/S0304-....
 
6.
Brown, R.W., 1939. Fossil Leaves, Fruits, and Seeds of Cercidiphyllum. Journal of Paleontology 13(5), 485–499.
 
7.
Brown, R.W., 1962. Paleocene flora of the Rocky Mountains and Great Plains. U.S. Geological Survey Professional Paper 375, 1–119.
 
8.
Chandler, M.E.J., 1961. The Lower Tertiary Floras of Southern England. I. Palaeocene Floras. London Clay Flora (Supplement). British Museum (Natural History), London, UK, pp. 77–259.
 
9.
Chandler, M.E.J., 1962. The Lower Tertiary Floras of Southern England. II. Flora of the Pipe-Clay Series of Dorset (Lower Bagshot). British Museum (Natural History), London, UK, pp. 100–110.
 
10.
Chen, I., Manchester, S.R., 2007. Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. American Journal of Botany 94, 1534–1553. https://doi.org/10.3732/ajb.94....
 
11.
Chen, I., Manchester, S.R., 2011. Seed morphology of Vitaceae. International Journal of Plant Sciences 172(1), 1–35.
 
12.
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G., 2008. Meshlab: an open-source mesh processing tool. In: Scarano, V., De Chiara, R., Erra, U. (eds), Eurographics Italian Chapter Conference, pp. 129–136.
 
13.
Collinson, M.E., Boulter, M.C., Holmes, P.R., 1993. Magnoliophyta (Angiospermae). In: Benton, M.J., (ed.), The fossil record 2. London: Chapman and Hall. 864, pp. 809–41.
 
14.
Collinson, M.E., Andrews, P., Bamford, M.K., 2009. Taphonomy of the early Miocene flora, Hiwegi Formation, Rusinga Island, Kenya. Journal of Human Evolution 57, 149–162. https://doi.org/10.1016/j.jhev....
 
15.
Collinson, M.E., Smith, S.Y., Manchester, S.R., Wilde, V., Howard, L.E., Robson, B.E., Ford, D.S., Marone, F., Fife, J.L., Stampanoni, M., 2012. The value of X-ray approaches in the study of the Messel fruit and seed flora. Palaeobiodiversity and Palaeoenvironments 92(4), 403–416. https://doi.org/10.1007/s12549....
 
16.
Corner, E.J.H., 1976. The Seeds of Dicotyledons: Volume 1 (Vol. 1). Cambridge University Press.
 
17.
Crane, P.R., 1984. A re-evaluation of Cercidiphyllum-like plant fossils from the British early Tertiary. Botanical Journal of the Linnean Society 89(3), 199–230.
 
18.
Crane, P.R., Stockey, R.A., 1985. Growth and reproductive biology of Joffrea speirsii gen. et sp. nov., a Cercidiphyllum-like plant from the Late Paleocene of Alberta, Canada. Canadian Journal of Botany 63(2), 340–364.
 
19.
Crane, P.R., DuVal, A., 2013. 766. Cercidiphyllum magnificum – Systematic placement and fossil history of Cercidiphyllum Siebold & Zuccarini: Cercidiphyllaceae. Curtis’s Botanical Magazine 30(3), 177–192.
 
20.
Crane, P.R., Manchester, S.R., Dilcher, D.L., 1990. A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. Fieldiana Geology 1418, 1–63.
 
21.
Donovan, M.P., Wilf, P., Labandeira, C.C., Johnson, K.R., Peppe, D.J., 2014. Novel Insect Leaf-Mining after the End-Cretaceous Extinction and the Demise of Cretaceous Leaf Miners, Great Plains, USA. PloS one 9(7), e103542. https://doi.org/10.1371/journa....
 
22.
Dorofeev, P.I., 1963. The Tertiary floras of western Siberia. Izdvo Akademii Nauk SSSR, Moscow-Leningrad, Rus-sian Academy of Sciences, USSR. Vol. 271 (in Russian).
 
23.
Dorofeev, P.I., 1977. The taxonomy of fossil Decodon J. F Gmel. (Lythraceae). Botanicheskii Zhurnal 62, 664–672 (in Russian).
 
24.
Dorofeev, P.I, 1988. Miocene floras of Tambov district. Akademija Nauka SSSR, Leningrad, Russian Academy of Sciences, USSR (in Russian).
 
25.
Ellis, B., Johnson, K.R., Dunn, R.E., 2003. Evidence for an in situ early Paleocene rainforest from Castle Rock, Colorado. Rocky Mountain Geology 38(1), 73–100.
 
26.
Endress, P.K., 1989. Phylogenetic relationships in the Hamamelidoideae. In: Crane, P.R., Blackmore, S. (eds), Evolution, systematics, and fossil history of the Hamamelidae. Clarendon Press Oxford, UK, pp. 227–248.
 
27.
Eriksson, O., Friis, E.M., Löfgren, P., 2000. Seed size, fruit size, and dispersal systems in angiosperms from the Early Cretaceous to the Late Tertiary. The American Naturalist 156(1), 47–58.
 
28.
Eyde, R.H., 1972. Note on geologic histories of flowering plants. Brittonia 24(1), 111–116.
 
29.
Eyde, R.H., 1997. Fossil record and ecology of Nyssa (Cornaceae). The Botanical Review 63(2), 97–123.
 
30.
Feng, G-P., Li, C., Zhilin, S.G., Wang, Y., Gabrielyan, I.G., 2000. Nyssidium jiayinense sp. nov. (Cercidiphyllaceae) of the Early Tertiary from north-east China. Botanical Journal of the Linnean Society 134(3), 471–484.
 
31.
Gemmill, C.E.E., Johnson, K.R., 1997. Paleoecology of a Late Paleocene (Tiffanian) megaflora from the Northern Great Divide Basin, Wyoming. Palaios 12(5), 439–448.
 
32.
Golovneva, L.B., Alekseev, P.I., 2010. The genus Trochodendroides Berry in the Cretaceous floras of Siberia. Paleobotanika 1, 120–166.
 
33.
Golovneva, L.B., Alekseev, P.I., 2017. Taxonomy and morphological diversity of infructescences Jenkinsella co-occurred with Trochodendroides leaves in the Cretaceous and Paleogene. Paleobotanika, 92–121.
 
34.
Graham, S.A., 2013. Fossil records in the Lythraceae. The Botanical Review 79(1), 48–145. https://doi.org/10.1007/s12229....
 
35.
Graham, S.A., Graham, A., 2014. Ovary, fruit, and seed morphology of the Lythraceae. International Journal of Plant Sciences 175(2), 202–240. https://doi.org/10.1086/674316.
 
36.
Gregor, H.J., 1989. Aspects of the fossil record and phylogeny of the family Rutaceae (Zanthoxyleae, Toddalioideae). In: Ehrendorfer, F. (ed.), Woody plants – evolution and distribution since the Tertiary. Springer, Vienna, pp. 251–265. https://doi.org/10.1007/978-3-....
 
37.
Herrera, F., Manchester S.R., Hoot, S.B., Wefferling, K.M., Carvalho, M.R., Jaramillo, C., 2011. Phytogeographic implications of fossil endocarps of Menispermaceae from the Paleocene of Colombia. American Journal of Botany 98(12), 1–14. https://doi.org/10.3732/ajb.10....
 
38.
Hickey, L.J. 1977., Stratigraphy and paleobotany of the Golden Valley Formation (Early Tertiary) of western North Dakota. Geological Society of America Inc. Memoir 150, 1–181.
 
39.
Huegele, I.B., Manchester, S.R., 2019. Newly recognized diversity of fruits and seeds from the Late Paleogene flora of Trinity County, East Texas, USA. International Journal of Plant Sciences 180(7), 681–708. https://doi.org/10.1086/704358.
 
40.
Huegele, I.B., Manchester, S.R., 2020. An Early Paleocene Carpoflora from the Denver Basin of Colorado, USA, and Its Implications for Plant-Animal Interactions and Fruit Size Evolution. International Journal of Plant Sciences 181(6), 646–665. https://doi.org/10.1086/707727.
 
41.
Ickert-Bond, S.M., Pigg, K.B., DeVore, M.L., 2015. Paleoochna tiffneyi gen. et sp. nov. (Ochnaceae) from the late Paleocene Almont/Beicegel Creek flora, North Dakota, USA. International Journal of Plant Sciences 176(9), 892–900. https://doi.org/10.1086/683275.
 
42.
Li, J., 1997. Systematics of the Hamamelidaceae based on morphological and molecular evidence. Doctoral Dis-sertations. https://scholars.unh.edu/disse....
 
43.
Mai, D.H., 1970. Subtropische Elemente im europäischen Tertiär I. Die Gattungen Gironniera, Sarcococca, Illicium, Evodia, Ilex, Mastixia, Alangium, Symplocos und Rehderodendron. Paläontologische Abhandlungen Abt. B 3, 441–503.
 
44.
Manchester, S.R., 1994. Fruits and seeds of the Middle Eocene nut beds flora, Clarno Formation, Oregon. Paleontographica Americana 58, 1–205.
 
45.
Manchester, S.R., 2014. Revisions to Roland Brown’s North American Paleocene flora. Acta Musei Nationalis Pragae, Series B – Historia Naturalis 70(3–4), 153–210.
 
46.
Manchester, S.R., Dilcher D.L., 1997. Reproductive and vegetative morphology of Polyptera (Juglandaceae) from the Paleocene of Wyoming and Montana. American Journal of Botany 84, 649–663.
 
47.
Manchester, S.R., Hickey, L.J., 2007. Reproductive and vegetative organs of Browniea gen. n. (Nyssaceae) from the Paleocene of North America. International Journal of Plant Sciences 168(2), 229–249. https://doi.org/10.1086/509661.
 
48.
Nichols, D.J., Ott, H.L., 1978. Biostratigraphy and evolution of the Momipites-Caryapollenites lineage in the early Tertiary in the Wind River Basin, Wyoming. Palynology 2(1), 93–112. https://doi.org/10.1080/019161....
 
49.
Nikitin, P.A., 1929. The systematic position of the fossil genus Diclidocarya E. M. Reid. Journal of Botany 67, 33–38.
 
50.
Nikitin, V.P., 2006. Palaeocarpology and Stratigraphy of the Paleogene and the Neogene Strata in Asian Russia. Izd. SO RAN, Filial Geo, Novosibirsk, ­Russia (in Russian).
 
51.
Olson, M.E., 2003. Stem and leaf anatomy of the arborescent Cucurbitaceae Dendrosicyos socotrana with comments on the evolution of pachycauls from lianas. Plant Systematics and Evolution 239(3), 199–214. https://doi.org/10.1007/s00606....
 
52.
Pocknall, D.T., Nichols, D.J., 1996. Palynology of coal zones of the Tongue River Member (upper Paleocene) of the Fort Union Formation, Powder River Basin, Montana and Wyoming. American Association of Stratigraphic Palynologists Foundation Contribution Series 32, 1–58.
 
53.
Proctor, V.W., Malone, C.R., 1965. Further evidence of the passive dispersal of small aquatic organisms via the intestinal tract of birds. Ecology 46(5), 728–729. https://doi.org/10.2307/193501....
 
54.
Reid, E.M., Chandler, M.E., 1933. The flora of the London Clay. British Museum (Natural History), London.
 
55.
Renner, S.S., Schaefer, H., 2016. Phylogeny and evolution of the Cucurbitaceae. In: Grumet, R., Katzir, N., Garcia-Mas, J. (eds) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham, pp. 13–23. https://doi.org/10.1007/7397_2....
 
56.
Rip, W.J., Rawee, N., de Jong, A., 2006. Alternation between clear, high-vegetation and turbid, low-vegetation states in a shallow lake: the role of birds. Aquatic Botany 85(3), 184–190. https://doi.org/10.1016/j.aqua....
 
57.
Robinson, L.N., Honey, J.G., 1987. Geologic setting of a new Paleocene mammal locality in the Northern Powder River Basin, Montana. Palaios 2(1), 87–90.
 
58.
Schaefer, H., Heibl, C., Renner, S.S., 2009. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proceedings of the Royal Society B: Biological Sciences 276(1658), 843–851. https://doi.org/10.1098/rspb.2....
 
59.
Soulié-Märsche, I., García, A., 2015. Gyrogonites and oospores, complementary viewpoints to improve the study of the charophytes (Charales). Aquatic Botany 120, 7–17. https://doi.org/10.1016/j.aqua....
 
60.
Stanley, E.A., 1965. Upper Cretaceous and Paleocene plant microfossils and Paleocene dinoflagellates and hystrichosphaerids from northwestern South Dakota. Bulletin of American Paleontology 49, 179–384.
 
61.
Stockey, R.A., Hoffman, G.L., Rothwell, G.W., 2013. Paleobotany and paleoecology of Gao Mine, a late Paleocene fossil locality near Red Deer, Alberta, Canada. Canadian Journal of Earth Sciences 50, 235–248. https://doi.org/10.1139/cjes-2....
 
62.
Takahashi, M., Crane, P.R., Manchester, S.R., 2002. Hironoia fusiformis gen. et sp. nov.; a cornalean fruit from the Kamikitaba locality (Upper Cretaceous, Lower Coniacian) in northeastern Japan. Journal of Plant Research 115(6), 463–473. https://doi.org/10.1007/s10265....
 
63.
Taylor L.H., Flynn, L.J., Jacobs, L.L., Baskin, H.A., 2020. James Gilbert Honey. Paludicola 12(4), 171–174.
 
64.
Tiffney, B.H., 1980. Fruits and seeds of the Brandon Lignite, V. Rutaceae. Journal of the Arnold Arboretum 61(1), 1–40.
 
65.
Tiffney, B.H., 1981a. Fruits and seeds of the Brandon lignite, VI. Microdiptera (Lythraceae). Journal of the Arnold Arboretum 62(4), 487–516.
 
66.
Tiffney, B.H., 1981b. Euodia costata (Chandler) Tiffney, (Rutaceae) from the Eocene of Southern England. Paläontologische Zeitschrift 55(3), 185–190.
 
67.
Tiffney, B.H., 1984. Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis. Annals of the Missouri Botanical Garden 71(2), 551–576.
 
68.
Tiffney, B.H., Manchester, S.R., 2019. A late Paleocene fruit and seed flora from the Fort Union Formation, Sand Draw, Wyoming, investigated by reflected light and X-ray tomography. Presented at Botany conference, Tucson, Arizona, 2019.
 
69.
Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T. W., McNeill, J., Monro, A.M., Prado, J., Price, M.J., Smith, G.F., 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. https://doi.org/10.12705/Code.....
 
70.
Van Beusekom, C.F., 1971. Revision of Meliosma (Sabiaceae), section. Blumea 19(3), 356.
 
71.
Van den Berg, M.S., Coops, H., Meijer, M.L., Scheffer, M., Simons, J., 1998a. Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, The Netherlands. In: Jeppesen, E., Soendergaard, M. (eds), The structuring role of submerged macrophytes in lakes. Ecological Studies, 131. Springer, pp. 339–352.
 
72.
Van den Berg, M.S., Scheffer, M., Coops, H., Simons, J. 1998b. The role of characean algae in the management of eutrophic shallow lakes. Journal of Phycology 34(5), 750–756.
 
73.
Wheeler, E.A., Manchester, S.R., 2014. Middle Eocene trees of the Clarno Petrified Forest, John Day Fossil Beds National Monument, Oregon. Paleobios 30(3), 105–114. https://doi.org/10.5070/P93030....
 
74.
Winter, U., Soulié-Märsche, I., Kirst, G.O., 1996. Effects of salinity on turgor pressure and fertility in Tolypella (Characeae). Plant, Cell & Environment 19(7), 869–879. https://doi.org/10.1111/j.1365....
 
75.
Zetter, R., Farabee, M.J., Pigg, K.B., Manchester, S.R., Devore, M.L., Nowak, M.D., 2011. Palynoflora of the late Paleocene silicified shale at Almont, North Dakota, USA. Palynology 35(2), 179–211. https://doi.org/10.1080/019161....
 
76.
Zhang, L.B., Simmons, M.P., Kocyan, A., Renner, S.S., 2006. Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: implications for morphological and sexual system evolution. Molecular Phylogenetics and Evolution 39(2), 305–322. https://doi.org/10.1016/j.ympe....
 
77.
Zhu, H., Huang, Y.J., Ji, X.P., Su, T., Zhou, Z.K., 2016. Continuous existence of Zanthoxylum (Rutaceae) in southwest China since the Miocene. Quaternary International 392, 224–232. https://doi.org/10.1016/j.quai....
 
 
CITATIONS (2):
1.
Climate‐influenced boreotropical survival and rampant introgressions explain the thriving of New World grapes in the north temperate zone
Ze‐Long Nie, Richard Hodel, Zhi‐Yao Ma, Gabriel Johnson, Chen Ren, Ying Meng, Stefanie Ickert‐Bond, Xiu‐Qun Liu, Elizabeth Zimmer, Jun Wen
Journal of Integrative Plant Biology
 
2.
The Paleocene Horse Creek florule, Tongue River Member of the Fort Union Formation, southeastern Montana, USA
Steven Manchester, Foster, Lott
Acta Palaeobotanica
 
eISSN:2082-0259
ISSN:0001-6594
Journals System - logo
Scroll to top