ORIGINAL ARTICLE
Pollen heteromorphism in Schleichera Lour. (Sapindaceae), observed in surface soil samples from central India
 
More details
Hide details
1
Birbal Sahni Institute of Palaeosciences, Lucknow-226007, India
Online publication date: 2021-06-30
Publication date: 2021-06-30
 
Acta Palaeobotanica 2021; 61(1): 32–41
 
HIGHLIGHTS
  • Pollen heteromorphism is observed in Schleichera Lour., a monotypic genus of the Sapindaceae family from central India.
  • Changes in ploidy levels, as well as environmental factors and/or pollination ecology, could be driving the phenomenon of pollen heteromorphism.
  • The present study provides insights of use in phylogeny and systematics, and has implications for pollen preservation as well.
KEYWORDS
ABSTRACT
Angiosperms display striking variation of pollen morphological features within and between populations of the same species, as well as within individual plants. We describe and illustrate variation of pollen aperture number, which is called pollen heteromorphism, in Schleichera Lour. (Sapindaceae) from surface soil samples collected from central India, based on combined observations from light microscopy (LM) and confocal laser scanning microscopy (CLSM). Tri-zono-parasyncolporoidate pollen grains are, in general, known to occur in Schleichera Lour., but occasional tetra-zono-parasyncolporoidate pollen is also recorded, for the first time, from Chhattisgarh State, central India. Changes in ploidy level (diploidy/polyploidy), chromosome number, the C-value of DNA, completion of meiosis, as well as environmental factors and/or pollination ecology could be driving the occurrence of pollen heteromorphism. The present study could provide insights into the phylogeny and systematics, and has implications for pollen preservation as well.
 
REFERENCES (83)
1.
Aizen, M., Raffaele, E., 1998. Flowering-shoot defoliation affectspollen grain size and postpollination pollen performance in Alstroemeria aurea. Ecology 79, 2133–2142. https://doi.org/10.2307/176716.
 
2.
Bhowmik, S., Datta, B.K., 2012. Pollen dimorphism of several members of Nymphaeaceae and Nelumbonaceae: an index of geographical and ecological variation. Notulae Scientia Biologicae 4(3), 38–44. https://doi.org/10.15835/nsb43....
 
3.
Campbell, I.D., Campbell, C., 1994. Pollen preservation: experimental wet-dry cycles in saline and desalinated sediments. Palynology 18, 5–10. https://doi.org/10.1080/019161....
 
4.
Campos, J.M.S., Sousa, S.M., Silva, P.S., Pinheiro, L.C., Sampaio, F., Viccini, L.F., 2011. Chromosome numbers and DNA C values in the genus Lippia (Verbenaceae). Plant Systematics and Evolution 291, 133–140. https://doi.org/10.1007/s00606....
 
5.
Cavalier-Smith, T., 1985. The Evolution of Genome Size. Chichester: John Wiley and Sons.
 
6.
Celenk, S., Tarimcilar, G., Bicakci, A., Kayank, G., Malyer, H., 2008. A palynological study of the genus Mentha L. (Lamiaceae). Botanical Journal of the Linnean Society 157, 141–154. https://doi.org/10.1111/j.1095....
 
7.
Chaloner, W.G., 1976. The evolution of adaptative features in fossil exines. In: Ferguson, I.K, Muller, J. (eds), The evolutionary signfficance of the exine. Linnean Society Symposium, Series no 1, 1–14.
 
8.
Champion, H.G., Seth, S.K., 1968. A Revised Survey of the Forest types of India. Manager of Publications, New Delhi, India.
 
9.
Chanda, S., Nilson, S., Blackmore, S., 1988. Phylogenetic trends in the Alismatales with reference to pollen grains. Grana 27, 257–272. https://doi.org/10.1080/001731....
 
10.
Clarke, G.C.S., 1975. Irregular pollen grains in some Hypericum species. Grana 15, 117–125. https://doi.org/10.1080/001731....
 
11.
Cranwell, L.M., 1952. New Zealand pollen studies – the monocotyledons. Bulletin of the Auckland Institute and Museum 3, 1–91.
 
12.
Cruzan, M.B., 1990. Variation in pollen size, fertilization ability, and postfertilization siring ability in Erythronium grandiflorum. Evolution 44, 843–856. https://doi.org/10.2307/240955....
 
13.
Dajoz, I., Till-Bottraud, I., Gouyon, P.H., 1991. Evolution or pollen morphology. Science 253, 66–68. https://doi.org/10.1126/scienc....
 
14.
Dajoz, I., Till-Bottraud, I., Gouyon, P.H., 1993. Pollen aperture polymorphism and gametophyte performance in Viola diversifolia. Evolution 47, 1080–1093. https://doi.org/10.2307/240997....
 
15.
Dajoz, I., Mignot, A., Hoss, C., Till-Bottraud, I., 1995. Pollen aperture heteromorphism is not due to unreduced gametophytes. American Journal of Botany 82(1), 104–111. https://doi.org/10.1002/j.1537....
 
16.
Díez, M.J., 1987. Gentianaceae. In: Valdés, B., Díez, M.J., Fernández, I. (eds) Atlas Polínico de Andalucía Occidental. Sevilla: Grafitres-Utrera. pp. 246–248.
 
17.
Doyle, J.A., Holton, C.L., 1991. Diversification of early angiosperm pollen in a cladistic context. In: Blackmore, S., Barnes, S.H. (eds.), Pollen and spores, patterns of diversification. Systematics Association Special 44, Clarendon Press, Oxford. pp. 169–195.
 
18.
Erdtman, G., 1952. Pollen morphology and plant taxonomy of Angiosperms. Waltham, Mass., U.S.A.
 
19.
Erdtman, G., 1957. Pollen morphology and plant taxonomy. Gymnospermae, Pteridophyta, Bryophyta. Stockholm and New York. https://doi.org/10.5962/bhl.ti....
 
20.
Erdtman, G., 1966. Pollen morphology and plant taxonomy. Hafner Publishing Company, New York.
 
21.
Erdtman, G., Berglund, B., Praglowski, J., 1961. An introduction to Scandinavian pollen flora. Grana 2, 3–92. https://doi.org/10.1080/001731....
 
22.
Faegri, K., Iversen, J., 1964. Text book of pollen analysis. 2nd Ed. Munksgaaard. Copenhagen.
 
23.
Feist-Burkhardt, S., Pross, J., 1999. Morphological analysis and description of Middle Jurassic dinoflagellate cyst marker species using confocal laser scanning microscopy, digital optical microscopy, and conventional light microscopy. Bulletin – Centres de Recherches Exploration-Production Elf- Aquitaine 22, 103–145.
 
24.
Ferguson, I.K., 1980. The pollen morphology of Ceratonia (Leguminosae: Caesalpinoideae). Kew Bulletin 35, 273–277. https://doi.org/10.2307/411457....
 
25.
Hesse, M., Halbritter, H., Zetter, R., Weber, M., Buchner, R., Frosch-Radivo, A., Ulrich, S., 2009. Pollen Terminology: An illustrated Handbook. Springer. Vienna.
 
26.
Havinga, A.J., 1964. Investigation into the differential corrosion susceptibility of pollen and spores. Pollen Spores 6, 621–635.
 
27.
Havinga, A.J., 1967. Palynology and pollen preservation. Review of Palaeobotany and Palynology 2, 81–98. https://doi.org/10.1016/0034-6....
 
28.
Havinga, A.J., 1984. A 20-year experimental investigation into the differential corrosion susceptibility of pollen and spores in various soil types. Pollen Spores 26, 541–558.
 
29.
Hochuli, P., Feist-Burkhardt, S., 2004. A boreal early cradle of Angiosperms? Angiospermlike pollen from the Middle Triassic of the Barents Sea (Norway). Journal of Micropalaeontology 23, 97–104. https://doi.org/10.1144/jm.23.....
 
30.
Humphrey, R., 2016. Pollen heteromorphism is pervasive in Thallictrum (Ranunculaceae). Plant Systematics and Evolution 302, 1171–1177. https://doi.org/10.1007/s00606....
 
31.
Kailas, J.G., Ramakrishna, H., Seetharam, D.S., 2016. Diversity in syncolpate pollen of arborescent taxa in Karimnagar District, Telangana State, India. Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(3), 771–776.
 
32.
Kar, R., Quamar, M.F., 2019. Pollen-based Quaternary palaeoclimatic studies in India: an overview of recent advances. Palynology 43(1), 76–93. https://doi.org/10.1080/019161....
 
33.
Kar, R., Quamar, M.F., 2020. Late Pleistocene-Holocene vegetation and climate change from the Western and Eastern Himalaya (India): palynological perspective. Current Science 119(2), 195–218.
 
34.
Katisiotis, A., Forsberg, R.A., 2005. Pollen grain size in four ploidy levels of genus Avena. Euphytica 83, 103–108. https://doi.org/10.1007/bf0167....
 
35.
Köppen, W., 1936. Das geographische System der Klimate. In: Köppen, W., Geiger, R. (eds) Handbuch der Klimatologie. Gebrüder Borntraeger, Berlin, pp. 1−44.
 
36.
Kundu, M., Schmidt, L.H., (ed.). 2011. Schleichera oleosa (Lour.) Oken. Seed leaflet 153.
 
37.
Lau, T., Stephenson, A.G., 1993. Effects of soil nitrogen on pollen production, pollen grain size, and pollen performance in Cucurbita pepo (Cucurbitaceae). American Journal of Botany 80, 763–768. https://doi.org/10.1002/j.1537....
 
38.
Lindley, J., 1830. The genera and species of orchidaceous plants. Ridgways, London.
 
39.
Mabberley, D.J., 1987. The Plant Book. Cambridge: Cambridge University Press.
 
40.
Makino, H., 1991. Flora polínica da Reserva do Parque Estadual das Fontes do Ipiranga (São Paulo, Brasil). Hoehnea 18, 43–48.
 
41.
Mignot, A., Hoss, C., Dajoz, I., Leuret, C., Jean-Pierre H., Jean-Michel D., Heberle Bors, E., Till-Bottraud, I. 1994. Pollen aperture polymorphism in the Angiosperms: importance, possible causes and consequences. Acta Botanica Gallica 141(2), 109–122. https://doi.org/10.1080/125380....
 
42.
Nadot, S., Ballard, Jr. H.E., Creach, J.B., Dajoz, I., 2000. The evolution of pollen heteromorphism in Viola: a phylogenetic approach. Plant Systematics and Evolution 223, 155–171. https://doi.org/10.1007/bf0098....
 
43.
Nayar, T.S., 1990. Pollen Flora of Maharashtra State, India. Today and Tomorrow’s Printers and Publishers, New Delhi.
 
44.
Ohri, D., Bhargava, A., Chatterjee, A., 2004. Nuclear DNA amounts in 112 species of tropical hardwoods-New estimates. Plant Biology 6, 555–561. https://doi.org/10.1055/s-2004....
 
45.
Pardo, C., 1990. Tipos harmomègatas en Gleditschia triacanthos (Papilionaceae, Caesalpinoideae). Polen, Esporas Aplicac. 1, 211–216.
 
46.
Pire, S.M., Dematteis, M., 2007. Pollen aperture heteromorphism in Centaurium pulchellum (Gentianaceae). Grana 46(1), 1–12. https://doi.org/10.1080/001731....
 
47.
Pozhidaev, A.E., 2002. Hypothetical way of pollen aperture patterning. 3. A family-based study of Krameriaceae. Review of Palaeobotany and Palynology 127, 1–23. https://doi.org/10.1016/s0034-....
 
48.
PROSEA (Plant Resources of South-East Asia). http://uses.planet-project.org... oleosa (PROSEA).
 
49.
Punt, W., Nienhuis, W., 1976. The Northwest European Pollen Flora. 6. Gentianaceae. Review of Palaeobotany and Palynology 21, 89–123. https://doi.org/10.1016/0034-6....
 
50.
Punt, W., Hoen, P.P., Blackmore, S., Nilsson, S., Le Thomas, A., 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143(1–2), 1–81. https://doi.org/10.1016/j.revp....
 
51.
Quamar, M.F., 2019. Palynological study of surface soil samples from the Kartala Forest Range of the Korba District, Chhattisgarh, central India: Modern pollen-rain/vegetation relationships. Geophytology 49(1&2), 37–48.
 
52.
Quamar, M.F., 2021. Monsoonal climatic reconstruction from central India during the last ca. 3600 cal yr: signatures of global climatic events, based on lacustrine sediment pollen records. Palynology (in press). https://doi.org/10.1080/019161....
 
53.
Quamar, M.F., Bera, S.K., 2017. Pollen records related to vegetation and climate change from northern Chhattisgarh, central India during the late Quaternary. Palynology 41(1), 17–23. https://doi.org/10.1080/019161....
 
54.
Quamar, M.F., Bera, S.K., 2020. Pollen records of vegetation dynamics, climate change and ISM variability since the LGM from Chhattisgarh State, central India. Review of Palaeobotany and Palynology 278, 104237. https://doi.org/10.1016/j.revp....
 
55.
Quamar, M.F., Chauhan, M.S., 2011. Late Holocene vegetation, climate change and human impact in southwestern Madhya Pradesh, India. The Palaeobotanist 60(2), 281–289.
 
56.
Quamar, M.F., Chauhan, M.S., 2012. Late Quaternary vegetation, climate as well as lake-level changes and human occupation from Nitaya area in Hoshangabad District, southwestern Madhya Pradesh (India), based on pollen evidence. Quaternary International 263, 104–113. https://doi.org/10.1016/j.quai....
 
57.
Quamar, M.F., Kar, R., 2020a. Modern pollen dispersal studies in India: a detailed synthesis and review. Palynology 44(2), 217–236. https://doi.org/10.1080/019161....
 
58.
Quamar, M.F., Kar, R., 2020b. Prolonged warming over the last ca. 11,700 years from the central Indian Core Monsoon Zone: Pollen evidence and a synoptic overview. Review of Palaeobotany and Palynology 276, 104159. https://doi.org/10.1016/j.revp....
 
59.
Quamar, M.F., Ali, S.N., Morthekai, P., Singh, V.K., 2017. Confocal (CLSM) and light (LM) photomicrographs of different plant pollen taxa from Lucknow, India: Implications of pollen morphology for systematics, phylogeny and preservation. Review of Palaeobotany and Palynology 247, 105–119. https://doi.org/10.1016/j.revp....
 
60.
Quamar, M.F., Kar, R., Thakur, B., 2021. Vegetation response to the Indian Summer Monsoon (ISM) variability during the Late Holocene from the central Indian core monsoon zone. The Holocene 31(7), 1197–1211.
 
61.
Rao, K.S., Chinnappa, C.C., 1983a. Pericolporate pollen in Gentianaceae. Canadian Journal of Botany 61, 174–178. https://doi.org/10.1139/b83-01....
 
62.
Ressayre, A., Godelle, B., Mignot, A., Gouyon, P.H., 1998. A morphogenetic model accounting for pollen aperture pattern in flowering plants. Journal of Theoretical Biology 193, 321–334. https://doi.org/10.1006/jtbi.1....
 
63.
Ressayre, A., Raquin, C., Mignot, A., Godelle, B. Gouyon, P.H., 2002. Correlated variation in microtubule distribution, callose deposition during male post-meiotic cytokinesis, and pollen aperture number across Nicotiana species (Solanaceae). American Journal of Botany 89, 393–400. https://doi.org/10.3732/ajb.89....
 
64.
Salih, A., Jones, A.S., Bass, D., Cox, G., 1997. Confocal imaging of exine as a tool for grass pollen analysis. Grana 36, 215–224. https://doi.org/10.1080/001731....
 
65.
Sarkissian, T.S., Harder, L.D., 2001. Direct and indirect responses to selection on pollen size in Brassica rapa L. Journal of Evolutionary Biology 14, 456–468. https://doi.org/10.1046/j.1420....
 
66.
Selling, O.H., 1947. Studies in Hawaiian pollen statistics, Part I and II. Bishop Museum Publ. Honolulu, Hawaii.
 
67.
Shute, C., Hemsley, A.R., Strother, P., 1996. Reassessment of dyads contained in a Late Silurian Rhynophytoid sporangium. Special Papers in Palaeontology 55, 137–145.
 
68.
Siddhanta, S., Bera, S., Maity, D., 2018. A note on a new pollen aperture in Capsella bursa-pastoris (L.) Medik. from Sikkim Himalaya. Palynology 42(4), 571–573. https://doi.org/10.1080/019161....
 
69.
Sousa, A.M., Pierre, P.M.O., Torres, G.A., Davide, L.C., Vaccini, L.F., 2013. Relationship between pollen morphology and chromosome numbers in Brazilian species of Lippia L. (Verbenaceae). Anais da Academia Brasileira de Ciências (Annals of the Brazilian Academy of Sciences) 85(1), 147–157. https://doi.org/10.1590/s0001-....
 
70.
Stainier, F., Huard, D., Bronckers, F., 1967. Technique de coloration spdcifique de l’exine des microspores jeunes encore groups en tetrades. Pollen et Spores 9, 367–370.
 
71.
Stebbins, G.L., 1971. Chromosomal evolution in higher plants. London: Edward Arnold, 216 p.
 
72.
Tejaswini, 2002. Variability of pollen grain features: a plant strategyto maximize reproductive fitness in two species of Dianthus? Sexual Plant Reproduction 14, 347–353. https://doi.org/10.1007/s00497....
 
73.
Till-Bottraud, I., Venable, L., Dajoz, I., Gouyon, P.H., 1994. Selection on pollen morphology: a game theory model. American Naturalis 144, 395411. https://doi.org/10.1086/285683.
 
74.
Till-Bottraud, I., Mignot, A., De Paepe, R., Dajoz, I., 1995. Pollen heteromorphism in Nicotiana tabacum (Solanaceae). American Journal of Botany 82, 1040–1048. https://doi.org/10.2307/244623....
 
75.
Till-Bottraud, I., Vincent, M., Dajoz, I., Mignot, A., 1999. Pollen aperture hetero-morphism. Variation in pollen-type proportions along altitudinal transects in Viola calcarata. Comptes rendus de l'Académie des Sciences Paris, Sciences de la vie 322, 579–589. https://doi.org/10.1016/s0764-....
 
76.
Van Campo, M., 1976. Patterns of pollen morphological variation within taxa. In: Ferguson, I.K., Muller, J. (eds), The evolutionary significance of the exine. Academic Press, Inc., New-York, 163–183.
 
77.
Via do Pico, G.M., Dematteis, M., 2010. Meiotic behavior and pollen morphology variation in Centaurium pulchellum (Gentianaceae). Plant Systematic and Evolution 290, 99–108. https://doi.org/10.1007/s00606....
 
78.
Vitha, S., Bryant, V.M., Zwa, A., Holzenburgh, A., 2009. Confocal imaging of pollen. Microscopy and Microanalysis 15, 622–623. https://doi.org/10.1017/s14319....
 
79.
Walker, J.W., Doyle, J.A., 1975. The bases of Angiosperm Phylogeny: palynology. Annals of the Missouri Botanical Garden 62, 664–723. https://doi.org/10.2307/239527....
 
80.
Wodehouse, R.P., 1959. Pollen grains, their structure, identification, and significance in science and medicine. Hafner Pub. Co, New York.
 
81.
Wodehouse, R.P., 1965. Pollen grains. their structure, identification and significance. Hafner Publ. Co, New York.
 
82.
Xu, Q., Zhang, S., Gaillard, M.J., Li, M., Cao, X., Tian, F., Li, F., 2016. Studies of modern pollen assemblages for pollen dispersal-deposition-preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact: A review based on case studies in China. Quaternary Science Reviews 149, 151–166. https://doi.org/10.1016/j.quas....
 
83.
Yildiz, K., Gucel, S., Dadandi, M.Y., 2009. A palynological investigation of endemic taxa from Northern Cyperus. Pakistan Journal of Botany 41(3), 991–1007.
 
eISSN:2082-0259
ISSN:0001-6594