Brummer Spring is one of several late Eocene wood localities near the town of Post, Oregon, western
USA. This locality includes four conifer wood types (one Pinus and three probable Cupressaceae) and 16
angiosperm woods, 13 of which can be assigned to family and three that cannot be reliably placed in an order.
Angiosperm families recognized include Lauraceae, Platanaceae, Cercidiphyllaceae, and Fagaceae (common at
Eocene localities in North America), as well as Salicaceae (common in compression floras, but rare in wood
assemblages), Rosaceae, which has the most specimens at this locality, Meliaceae, and Malvaceae. The affinities
of these woods are primarily with warm temperate to subtropical vegetation of eastern Asia and eastern North
America. Only Platanoxylon and Fagus occur at the two other Post localities. There also are fruits at Brummer
Spring with the only overlap between the fruits and woods being one poorly preserved “Prunus-like” endocarp.
Other fruits and seeds are Juglans, Nyssa, possible Magnolia and Taxaceae, and an Incertae Sedis. As was
true for the other two Post wood localities, the higher incidence of ring-porosity here as compared to the older
middle Eocene Clarno Nut Beds wood assemblage attests to increased seasonality from middle to late Eocene
in western North America.
FUNDING
No.
CONFLICT OF INTEREST
The authors have
declared that no competing interests exist.
Akkemik, Ü., 2021. A re-examination of the angiosperm wood record from the early and middle Miocene of Turkey, and new species descriptions. Acta Palaeobotanica 61(1), 43–94. https://doi.org/10.35535/acpa-....
Akkemik, Ü., Akkilic, H., Güngor, Y., 2019. Fossil wood from the Neogene of Kilyos coastal area in Istanbul, Turkey. Palaeontographica Abt. B 299(1–6), 133–185. https://doi.org/10.1127/palb/2....
Angiosperm Phylogeny Group, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. APG IV. Botanical Journal of the Linnean Society 181(1), 1–20. https://doi.org/10.1111/boj.12....
Baas, P., 1976. Some functional and adaptive aspects of vessel element member morphology. In: Baas, P., Bolton, A.J., Catling, D.M. (eds), Wood structure in biological and technological research. Leiden Botanical Series 3, Leiden University Press, Leiden, pp. 157–181. https://doi.org/10.1163/978900....
Bailey, I.W., 1924. The Problem of identifying the Wood of Cretaceous and Later Dicotyledons: Paraphyllanthoxylon arizonense. Annals of Botany 38, 439–451. https://doi.org/10.1093/oxford....
Bailey, I.W., Faull, A., 1934. The cambium and its derivative tissues: No. IX. Structural variation in the redwood, Sequoia sempervirens, and its significance in the identification of fossil woods. Journal of the Arnold Arboretum 15(3), 233–254. https://doi.org/10.5962/p.1853....
Benedict, J.C., Devore, M.L., Pigg, K.B., 2011. Prunus and Oemleria (Rosaceae) flowers from the late early Eocene Republic flora of northeastern Washington State, USA. International Journal of Plant Sciences 172(7), 948–958. https://doi.org/10.1086/660880.
Beyer, A.F., 1954. Some petrified wood from the Specimen Ridge area of Yellowstone National Park. American Midland Naturalist 51, 553–576. https://doi.org/10.2307/242212....
Boura, A., De Franceschi, D., 2007. Is porous wood structure exclusive of deciduous trees? Systematic Palaeontology (Palaeobotany) 6(6–7), 385–391. https://doi.org/10.1016/j.crpv....
Brett, D.W., 1956. LXXXII. – Fossil wood of Cercidiphyllum Sieb. & Zucc. from the London Clay. Annals and Magazine of Natural History, Series 12, 9(105), 657–665. https://doi.org/10.1080/002229....
Cevallos-Ferriz, S.R.S., Stockey, R.A., 1990. Vegetative remains of the Rosaceae from the Princeton Chert (middle Eocene) of British Columbia. IAWA Bulletin n.s. 11(3), 261–280. https://doi.org/10.1163/229419....
Cevallos-Ferriz, S.R., Stockey, R.A., 1991. Fruits and seeds from the Princeton chert (middle Eocene) of British Columbia: Rosaceae (Prunoideae). Botanical Gazette 152(3), 369–379. https://doi.org/10.1086/337899.
Chaney, R.W., 1927. Geology and Paleontology of the Crooked River Basin, with special reference to the Bridge Creek. Carnegie Institute of Washington Publications 346, 45–138.
Cheng, Y.-M., Ferguson, D.K., Li, C.-S., Jiang, X.-M., Wang, Y.-F., 2006. Cedreloxylon cristalliferum, a new record of angiosperm wood of Pliocene age from Yunnan, China. IAWA Journal 27, 145–152. https://doi.org/10.1163/229419....
Choi, S-K., Kim, K., Jeong, K., Terada, K., Suzuki, M., Uematsu, H., 2010. Fossil woods from the Miocene in Yamagata Prefecture, Japan. IAWA Journal 31(1), 95–117. https://doi.org/10.1163/229419....
Collinson, M.E., 1986. 7. Use of modern generic names for plant fossils. In: Spicer, R.A., Thomas, B.A. (eds), Systematic and taxonomic approaches in palaeobotany. The Systematic Association Special Volume 31. Clarendon Press, Oxford, pp. 91–104.
Dünisch, O., Bauch, J., Gasparotto, L., 2002. Formation of increment zones and intraannual growth dynamics in the xylem of Swietenia macrophylla, Carapa guianensis, and Cedrela odorata (Meliaceae). IAWA Journal 23, 101–119. https://doi.org/10.1163/229419....
Dupéron, J., 1976. A propos de quelques bois fossiles du sud-ouest de la France. Bulletin de la Société botanique de France 123, 533–540. https://doi.org/10.1080/003789....
Dupéron, J., Dupéron-Laudoueneix, M., Sakala, J., De Franceschi, D., 2008. Ulminium diluviale Unger: Historique de la découverte et nouvelle étude. Annales de Paléontologie 94, 1–12. https://doi.org/10.1016/j.annp....
Falcon-Lang, H.J., Wheeler, E., Baas, P., Herendeen, P.S., 2012. A diverse charcoalified assemblage of Cretaceous (Santonian) angiosperm woods from Upatoi Creek, Georgia, USA. Part 1: Wood types with scalariform perforation plates. Review of Palaeobotany and Palynology 184, 49–73. https://doi.org.10.1016/j.revp...
Gottwald, H., 2000. Gymnosperme und dicotyle Hölzer (67) aus den “Aachener Sanden” der oberen Kreide von NO-Belgien und NW-Deutschland. Documenta Naturae 131, 1–65.
Guleria, J.S., Thakur, V.C., Virdi, N.S., Lakhanpal, R.N., 1983. A fossil wood of Prunus from the Kargil (=Liyan) Formation of Ladakh. In: V.C., Tukur, K.K., Sharma (eds), Geology of Indus Supoture Zone of Ladakh. Wadia Inst. Himalayan Geol., Dehradun, pp. 187–193.
Guo, W.-Y., Yang, J., Gromyko, D., Ablaev, A., Wang, O., Li., C-S., 2010. First record of Cercidiphylloxylon (Cercidiphyllaceae) from the Palae-ocene of Fushun, NE China. Journal of Systematics and Evolution 48(4), 302–308. https://doi.org/10.1111/j.1759....
IAWA Committee, 1989. IAWA list of microscopic features for hardwood identification with an appendix on non-anatomical features. IAWA Bulletin n.s. 10(3), 219–332.
Jeong, E.K., Kim, K., Kim, J.H., Suzuki, M., 2003. Comparison of Korean and Japanese Tertiary fossil wood floras with special references to the genus Wataria. Geosciences Journal 7(2), 157–161. https://doi.org/10.1007/BF0291....
Koutecky, V., Sakala, J., Chytry, V., 2022. Paradiospyroxylon kvacekii gen. et sp. nov. from the Paleogene of the Czech Republic: a case study of individual variability and its significance for fossil wood systematics. Historical Biology 35(7), 1186–1196. https://doi.org/10.1080/089129....
Mabberley, D.J., 2017. Mabberley’s Plant-book: A Portable Dictionary of Plants, Their Classification and Uses. 4th edition. Cambridge University Press, Cambridge. https://doi.org/10.1017/978131....
Mädel-Angeliewa, E., 1968. Eichen- und Pappelholz aus der pliozänen Kohle im Gebiet von Baccinello (Toskana, Italien). Geologisches Jahrbuch 86, 433–470.
Manchester, S.R., 1979. Triplochitioxylon (Sterculiaceae): a new genus of wood from the Eocene of Oregon and its bearing on xylem evolution in the extant genus Pterospermum. American Journal of Botany 67(1), 59–67. https://doi.org/10.1002/j.1537....
Manchester, S.R., 1980. Chattawaya (Sterculiaceae): a new genus of wood from the Eocene of Oregon and its implications for xylem evolution of the extant genus Pterospermum. American Journal of Botany 66(6), 699–708. https://doi.org/10.1002/j.1537....
Manchester, S.R., Lott, T.L., 2024. Fossil leaves, fruits and seeds of the Late Eocene Teater Road flora near Post, Oregon, USA. PaleoBios 41(2), 1–71. https://doi.org/10.5070/P94126....
Mantzouka, D., Karakitsios, V., Sakala, J., Wheeler, E.A., 2016. Using idioblasts to group Laurinoxylon species: case study from the Oligo-Miocene of Europe. IAWA Journal 37(3), 459–488. https://doi.org/10.1163/229419....
Meijer, J.J.F., 2000. Fossil woods from the Late Cretaceous Aachen Formation. Review of Palaeobotany and Palynology 112, 297–336. https://doi.org/10.1016/S0034-....
Meyer, H.W., Manchester, S.R., 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in Geological Science 141, 1–195.
Moll, J.W., Janssonius, H.H., 1911. Mikrographie des Holzes der auf Java vorkommenden Baumarten. Bd. Calyciflorae. E.J. Brill, Leiden, the Netherlands.
Nishino, M., Terada, K., Uemura, K., Ito, Y., Yamada, T., 2023. An exceptionally well-preserved monodominant fossil forest of Wataria from the lower Miocene of Japan. Science Reports 13(1), 10172. https://doi.org/10.1038/s41598....
Nunes, C.I., Pujana, R.R., Escapa, I.H., Gandolfo, M.A., Cuneo, N., 2018. A new species of Carlquistoxylon from the Early Cretaceous of Patagonia (Chubut Province, Argentina): the oldest record of angiosperm wood from South America. IAWA Journal 39(4), 405–426. https://doi.org/10.1163/229419....
Petrescu, I., Dragastan, O., 1972. Rezultatul cercetarilor asupra unor resturi de trunchiuri din Tertairul Romaniei. Studii i Cercetări de Geologie, Geofizică, Geografie: Seria Geologie 17, 445–451.
Prakash, U., Dayal, R., 1965. Fossil woods of Grewia from the Deccan Intertrappean Series, India. The Palaeobotanist 13, 17–26. https://doi.org/10.54991/jop.1....
Selmeier, A., 1984. Kleinporige Laubhölzer (Rosaceae, Salicaceae) aus jungtertiären Schichten Bayerns. Mitteilungen der Bayerischen Staats-sammlung für Paläontologie und Historische Geologie 24, 121–150.
Selmeier, A., 1987. Cedreloxylon n. gen. (Meliaceae) aus sekundärer Lagerstätte von Seibresdorf am Inn (Bayern). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 11, 205–222.
Selmeier, A., 2000. Structural variation of Tertiary Grewia (Tiliaceae) woods from East Bavarian Molasse, Germany. Feddes Repertorium 111(7–8), 465–480. https://doi.org/10.1002/fedr.2....
Srivastava, R., Guleria, J.S., 2000. Grewinium, a substitute name for Grewioxylon Shallom non Schuster. The Palaeobotanist 49, 531–532. https://doi.org/10.54991/jop.2....
Suzuki, M., 1984. Some fossil woods from the Palaeogene of northern Kyushu, III. The Botanical Magazine Tokyo 97, 457–468. https://doi.org/10.1007/BF0248....
Takahashi, A., Suzuki, M., 1988. Two new fossil woods of Acer and a new combination of Prunus from the Tertiary of Japan. The Botanical Magazine Tokyo 101, 473–481. https://doi.org/10.1007/BF0248....
Takahashi, K., Suzuki, M., 2003. Dicotyledonous fossil wood flora and early evolution of wood characters in the Cretaceous of Hokkaido, Japan. IAWA Journal 24, 269–309. https://doi.org/10.1163/229419....
Terada, K., Suzuki, M., 1988. Revision of the so-called ‘Reevesia’ fossil woods from the Tertiary in Japan – a proposal of the new genus Wataria (Sterculiaceae). Review of Palaeobotany and Palynology 103, 234–251. https://doi.org/10.1016/S0034-....
Trivedi, B.S., Srivastava, K., 1988. Flacourtioxylon mohgonense gen. et sp. nov. from the Deccan Intertrappean bed of Mohgaon Kalan, Chhidwara District, M.P. (India). Journal of the Indian Botanical Society 65, 500–501.
Vasquez-Loranca, A.R., Cevallos-Ferriz, S.R.S., 2022. A diverse assemblage of Miocene Lauraceae in Chalatenago, El Salvador. IAWA Journal 43(4), 479–507. https://doi.org/10.1163/229419....
Watari, S., 1941. Studies on the fossil woods from the Tertiary of Japan. II. Fossil woods from the River Nesori, Namiiuti Villaga, and the River Hiranuka, Kozuya Village, Ninohe District, Iwate Prefecture. Japanese Journal of Botany 11, 417–438.
Watari, S., 1952. Dicotyledonous woods from the Miocene along the Japan-sea side of Honshu. Journal of the Faculty of Sciences, University of Tokyo Sect. III (Botany) 6, 97–134.
Wheeler, E.A., Landon, J., 1992. Late Eocene (Chadronian) dicotyledonous woods from Nebraska: evolutionary and ecological significance. Review of Palaeobotany and Palynology 74, 267–282. https://doi.org/10.1016/0034-6....
Wheeler, E.A., Manchester, S.R., 2021. A diverse assemblage of late Eocene woods from Oregon, USA. Fossil Imprint 77(2), 299–329. https://doi.org/10.37520/fi.20....
Wheeler, E.A., Scott, R.A., Barghoorn, E.S., 1978. Fossil dicotyledonous woods from Yellowstone National Park. II. Journal of the Arnold Arboretum 59, 1–26. https://doi.org/10.5962/p.1858....
Wheeler, E.A., McClammer, J., Lapasha, C.A., 1995. Similarities and differences in dicotyledonous woods of the Cretaceous and Paleocene, San Juan Basin, New Mexico. IAWA Journal 16(3), 223–254. https://doi.org/10.1163/229419....
Wheeler, E.A., Baas, P., Rodgers, S., 2007. Variations in dicot wood anatomy: a global analysis based on the InsideWood database. IAWA Journal 28(3), 229–258. https://doi.org/10.1163/229419....
Wheeler, E.A., Gasson, P.E., Baas, P., 2020. Using the InsideWood web site: potentials and pitfalls. IAWA Journal 41(4), 412–462. https://doi.org/10.1163/229419....
Wheeler, E.A., Manchester, S.R., Baas, P., 2023. A late Eocene wood assemblage from the Crooked River Basin, Oregon, USA. PaleoBios 40(14), 1–55. https://doi.org/10.5070/P94014....
Wolfe, J.A., 1994. Tertiary climatic changes at middle latitudes of western North America. Palaeogeography, Palaeoclimatology, Palaeoeocology 108, 195–205. https://doi.org/10.1016/0031-0....
Zhang, S-Y., Baas, P., 1992. Wood anatomy of trees and shrubs from China. III. Rosaceae. IAWA Bulletin 13(1), 21–91. https://doi.org/10.1163/229419....
Zhang, S-Y., Baas, P., Zandee, M., 1992. Wood structure of the Rosaceae in relation to ecology, habit and phenology. IAWA Bulletin 13(3), 306–349. https://doi.org/10.1163/229419....
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.