ORIGINAL ARTICLE
Evidence for fungal proliferation following the Cretaceous/Paleogene mass-extinction event, based on chemostratigraphy in the Raton and Powder River basins, western North America
Keith Berry 1  
 
More details
Hide details
1
Science Department, Hoehne Re-3 School District, Hoehne, Colorado, 81046, U.S.A.
Submission date: 2019-12-01
Online publication date: 2020-06-29
Publication date: 2020-06-29
 
Acta Palaeobotanica 2020; 60(1): 134–142
 
KEYWORDS
ABSTRACT
The presence of the amino acid α-aminoisobutyric acid (Aib) within Cretaceous/Paleogene (K/Pg) boundary clay in the Raton and Powder River basins in Colorado and Wyoming, respectively, has been described as compelling evidence that extraterrestrial Aib survived the high-energy Chicxulub impact. Based on contemporary experiments and simulations, however, it is highly unlikely that extraterrestrial Aib survived the impact, which had peak impact pressures and temperatures in excess of 600 GPa and 10,000 K, respectively. In other words, the amino acid signature of the carbonaceous chondritic asteroid that impacted Chicxulub was undoubtedly destroyed upon impact during formation of the vapor plume or so-called “fireball.” The only organisms known to produce Aib are the suite (more than 30 genera) of cosmopolitan saprotrophic filamentous fungi that include Trichoderma Pers., which has recently been hypothesized to have thrived during the K/Pg mass-extinction event. Therefore it is proposed that the Aib horizon in the K/Pg boundary clay in the Raton and Powder River basins correlates with the K/Pg boundary fungal spike, which thus far has only been observed in New Zealand (Southern Hemisphere). This proposition is based upon superimposing the Aib horizon on the well-known iridium and fern-spore spikes, as its stratigraphic position precisely matches that predicted by the fungal spike. If correct, this hypothesis alters the conventional perspective on the tempo and mode of terrestrial ecosystem recovery in western North America, as the heavily sampled K/Pg boundary section in the Raton Basin was instrumental in shaping the traditional narrative of the rapid recolonization of a denuded landscape by ferns via wind-blown spores in the immediate wake of regional deforestation caused by the K/Pg impact event. Perhaps more importantly, it could present an alternative to traditional palynological approaches for locating the fungal spike in other terrestrial K/Pg boundary sections and could provide additional support for the generalization that global mass-extinction events are frequently accompanied by fungal spikes.
 
REFERENCES (64)
1.
Alauzet, N., Roussos, S., Garreau, H., Vert, M., 2001. Microflora dynamics in earthworms casts in an artificial soil (biosynthesol) containing lactic acid oligomers. Brazilian Archives of Biology and Technology 44, 113–119. https://doi.org/10.1590/s1516-....
 
2.
Alvarez, W., Claeys, P., Kieffer, S.W., 1995. Emplacement of Cretaceous–Tertiary boundary shocked quartz from the Chicxulub crater. Science 269, 930–935. https://doi.org/10.1126/scienc....
 
3.
Barclay, R., Johnson, K.R., Betterton, W.J., Dilcher, D.L., 2003. Stratigraphy and megaflora of a K-T boundary section in the eastern Denver Basin, Colorado. Rocky Mountain Geology 38(1), 45–71. https://doi.org/10.2113/gsrock....
 
4.
Becker, L., Poreda, R.J., Bunch, T.E., 2000. Fullerenes: An extraterrestrial carbon carrier phase for noble gases. Proceedings of the National Academy of Sciences, USA 97, 2979–2983. https://doi.org/10.1073/pnas.9....
 
5.
Bercovici, A., Vellekoop, J., 2017. Methods in paleopalynology and palynostratigraphy: an application to the K-Pg boundary. In: Zeigler, K.E., Parker, W. (eds), Terrestrial depositional systems: decipherinc complexities through multiple stratigraphic methods. Elsevier, Cambridge, pp. 127–164. https://doi.org/10.1016/b978-0....
 
6.
Berry, K., 2019a. Linking fern foliage with spores at the K-Pg boundary section in the Sugarite coal zone, New Mexico, USA, while questioning the orthodoxy of the global pattern of plant succession across the K-Pg boundary. Neues Jahrbuch für Geologie und Paläontologie 291, 159–169. https://doi.org/10.1127/njgpa/....
 
7.
Berry, K., 2019b. Fern spore viability considered in relation to the duration of the Cretaceous–Paleogene (K-Pg) impact winter. A contribution to the discussion. Acta Palaeobotanica 59, 19–25. https://doi.org/10.2478/acpa-2....
 
8.
Berry, K., 2019c. Cyclosorus (Thelypteridaceae) s.l. from K-Pg boundary strata in central Colorado, USA: the oldest thelypteridaceous (cyclosoroid) fossils and their affinity to modern and fossil forms. Neues Jahrbuch für Geologie und Paläontologie, Abh. 293, 307–323. https://doi.org/10.1127/njgpa/....
 
9.
Berry, K., 2020. A thelypteridaceous fern from the early Paleocene Raton Formation, south-central Colorado, and its importance in interpreting the climate of the region. Mtn Geologist 57, 5–20. https://doi.org/10.31582/rmag.....
 
10.
Bertrand, M., van der Gaast, S., Vilas, F., Hörz, F., Haynes, G., Chabin, A., Brack, A., Westall, F., 2009. The fate of amino acids during simulated meteoritic impact. Astrobiology 9, 943–951. https://doi.org/10.1089/ast.20....
 
11.
Brisman, K., Engel, M.H., Macko, S.A., 2001. Distribution, stereochemistry, and stable isotope composition of amino acids in K/T boundary sediments. Precambrian Research 106, 59–77. https://doi.org/10.1016/s0301-....
 
12.
Brückner, H., Becker, D., Gams, W., Degenkolb, T., 2009. Aib and Iva in the biosphere: neither rare nor necessarily extraterrestrial. Chemistry and Biodiversity 6, 38–56. https://doi.org/10.1002/cbdv.2....
 
13.
Brückner, H., Fox, F., Degenkolb, T., 2019. Sequences of acretocins, peptaibiotics containing the rare 1-Aminocyclopropanecarboxylic Acid, from Acremonium crotocinigenum CBS 217.70. Chemistry and Biodiversity 16, 1–16. https://doi.org/10.1002/cbdv.2....
 
14.
Chandler, M.E.J., 1955. The Schizaeaceae of the South of England in Early Tertiary times. Bulletin of the British Museum (Natural History) 2, 291–314.
 
15.
Chandler, M.E.J., 1963. The lower Tertiary floras of southern England III: the flora of the Bournemouth beds; the Boscombe, and the Highcliff Sands. British Museum of Natural History, London. https://doi.org/10.5962/bhl.ti....
 
16.
Chin, K., Pearson, D., Ekdale, A.A. 2013. Fossil worm burrows reveal very early terrestrial animal activity and shed light on trophic resources after the end-Cretaceous mass extinction. PLoSONE 8, 1–8. https://doi.org/10.1371/journa....
 
17.
Contreras-Cornejo, H.A., Macías-Rodríguez, L., Del- Val, E., Larsen, J., 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology 92, 1–17. https://doi.org/10.1093/femsec....
 
18.
Cooper, G., Horz, F., O’Leary, A., Chang, S., 2013. The impact and oxidation survival of selected meteoritic compounds: signatures of asteroid organic material on planetary surfaces. Lunar and Planetary Science Conference 44, 1868.
 
19.
Elsila, J.E., Callahan, M.P., Glavin, D.P., Dworkin, J.P., Brückner, H., 2011. Amino acids from fungal peptaibiotics: assessing the potential for meteoritic contamination. Astrobiology 11, 123–133. https://doi.org/10.1089/ast.20....
 
20.
Flynn, A.G., Peppe, D.J., 2019. Early Paleocene tropical forest from the Ojo Alamo Sandstone, San Juan Basin, New Mexico, USA. Paleobiology 45, 612–635. https://doi.org/10.1017/pab.20....
 
21.
Goderis, S., Tagle, R., Belza, J., Smit, J., Montari, A., Erzinger, J., Claeys, P., 2013. Reevaluation of siderophile element abundances and ratios across the Cretaceous–Paleogene (K-Pg) boundary: implications for the nature of the projectile. Geochemica et Cosmochimica Acta 120, 417–446. https://doi.org/10.1016/j.gca.....
 
22.
Hildebrand, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo, A., Jacobsen, S.B., Boynton, W.V., 1991. Chicxulub Crater: a possible Cretaceous/ Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19, 867–871. https://doi.org/10.1130/0091-7...<0867:ccapct>2.3.co;2.
 
23.
Holker, U., Ludwig, S., Scheel, T., Hofer, M., 1999. Mechanisms of coal solubilization by the deuteromycetes Trichoderma atrovide and Fusarium oxysporum. Applied Microbiology and Biotechnology 52, 57–59. https://doi.org/10.1007/s00253....
 
24.
Kamalov, L.S., Turgunov, K.K., Aripova, S.F., Abdilamilov, O., 2018. Gibberellin A-3 from the microscopic fungus Trichoderma harzianum. Chemistry of Natural Compounds 54, 421–422. https://doi.org/10.1007/s10600....
 
25.
Knowlton, F.H., 1930. The flora of the Denver Formation and associated formations of Colorado. USGS Professional Paper 155, 1–142. https://doi.org/10.3133/pp155.
 
26.
Kring, D.A., Durda, D.D., 2002. Trajectories and distribution of material ejected from the Chicxulub impact crater: implications for postimpact wildfires. Journal of Geophysical Research 107, 6-1–6-22. https://doi.org/10.1029/2001je....
 
27.
Kubicek, C.P., Steindorff, A.S., Chenthamara, K., Manganiello, G., Henrissat, B., Zhang, J., Cai, F., Kopchinskiy, A.G., Kubicek, E.M., Kuo, A., Baroncelli, R., Sarrocco, S., Noronha, E.F., Vannacci, G., Shen, Q., Grigoriev, I.V., Druzhinina, I.S., 2019. Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 20, 485–509. https://doi.org/10.1186/s12864....
 
28.
Kyte, F.T., 1998. A meteorite from the Cretaceous/Tertiary boundary. Nature 396, 237–239. https://doi.org/10.1038/24322.
 
29.
Lee, W.T., Knowlton, F.H., 1917. Geology and Paleontology of the Raton Mesa and Other Regions, Colorado and New Mexico. USGS Professional Paper 109, 1–435. https://doi.org/10.3133/pp101.
 
30.
Lyson, T.R., Miller, I.M., Bercovici, A.D., Weissenburger, K., Fuentes, A.J., Clyde, W.C., Hagadorn, J.W., Butrim, M.J., Johnson, K.R., Fleming, R.F., Barclay, R.S., MacCracken, S.A., Lloyd, B., Wilson, G.P., Krause, D.W., Chester, S.G.B., 2019. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science 366, 977–983. https://doi.org/10.1126/scienc....
 
31.
Martins, Z., Price, M.C., Goldman, N., Sephton, M.A., Burchell, M.J., 2013. Shock synthesis of amino acids from impacting cometary and icy planet surface analogues. Nature Geoscience 6, 1045–1049. https://doi.org/10.1038/ngeo19....
 
32.
Mita, H., Shimoyama, A., Kajiwara, Y., 1996. Search for extraterrestrial amino acids in sediments at the Cretaceous/Tertiary boundary in Kawaruppu, Hokkkaido, Japan. Geochemical Journal 30, 89–98. https://doi.org/10.2343/geoche....
 
33.
Moore, C.B., 1996. Amino acids in Cretaceous-Tertiary boundary outcrops in the Raton Basin. International Workshop Tunguska 96. University of Bologna, Bologna.
 
34.
Nester, J.E., Coolbaugh, R.C., 1986. Factors influencing spore germination and early gametophyte development in Anemia mexicana and Anemia phyllitidis. Plant Physiology 82, 230–235. https://doi.org/10.1104/pp.82.....
 
35.
Nichols, D.J., Brown, J.L., Attrep, M., Jr., Orth, C.R., 1992. A new Cretaceous-Tertiary boundary locality in the western Powder River Basin, Wyoming. Cretaceous Research 13, 3–30. https://doi.org/10.1016/0195-6....
 
36.
Nichols, D.J., Johnson, K.R., 2008. Plants and the K-T Boundary. Cambridge University Press, Cambridge.
 
37.
Ohno, S., Kadono, T., Kurosawa, K., Hamura, T., Sakaiya, T., Shigemori, K., Hironaka, Y., Sano, T., Watari, T., Otani, K., Matsui, T., Sugita, S., 2014. Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification. Nature Geoscience 7, 279–282. https://doi.org/10.1038/ngeo20....
 
38.
Oró, J., Lazcano, A., Ehrenfreund, P., 2006. Comets and the origin and evolution of life. In: Thomas, P.J. et al. (eds), Comets and the Origin and Evolution of Life: Second Edition. Springer-Verlag, Berlin, pp. 1–28. https://doi.org/10.1007/3-540-....
 
39.
Parle, J.N., 1963. A microbiological study of earthworm casts. Journal of General Microbiology 31, 13–22. https://doi.org/10.1099/002212....
 
40.
Pierazzo, E., Chyba, C.F., 1999. Amino acid survival in large cometary impacts. Meteoritics and Planetary Science 34, 909–918. https://doi.org/10.1111/j.1945....
 
41.
Pierazzo, E., Chyba, C.F., 2006. Impact delivery of prebiotic organic matter to planetary surfaces. In: Thomas, P.J. et al. (eds), Comets and the Origin and Evolution of Life: Second Edition. Springer- Verlag, Berlin, pp. 137–168. https://doi.org/10.1007/3-540-....
 
42.
Pierazzo, E., Melosh, H.J., 2000. Hydrocode modeling of oblique impacts: the fate of the projectile. Meteoritics and Planetary Science 35, 117–130. https://doi.org/10.1111/j.1945....
 
43.
Pillmore, C.L., Nichols, D.J., Fleming, R.F., 1999. Field guide to the continental Cretaceous-Tertiary boundary in the Raton Basin, Colorado and New Mexico. GSA Field Guide 1, 135–155. https://doi.org/10.1130/0-8137....
 
44.
Poirier, L., Amiard, J.-C., Mondeguer, F., Quiniou, F., Ruiz, N., Pouchus, Y.F., Montagu, M., 2007. Determination of peptaibol trace amounts in marine sediments by liquid chromatography/electrospray ionization-ion trap-mass spectrometry. Journal of Chromatography A 1160, 106–113. https://doi.org/10.1016/j.chro....
 
45.
Quitté, G., Robin, E., Levasseur, S., Capmas, F., Rocchia, R., Birck, J.-L., Allègre, C.J., 2007. Osmium, tungsten, and chromium isotopes in sediments and in Ni-rich spinel at the K-T boundary: signature of a chondritic impactor. Meteoritics and Planetary Science 42, 1567–1580. https://doi.org/10.1111/j.1945....
 
46.
Röhrich, C.R., Iversen, A., Jaklitsch, W.M., Voglmayr, H., Berg, A., Dörfelt, H., Thrane, U., Vilcinskas, A., Nielsen, K.F., Döhren, H.V., Brückner, H., Degenkolb, T. 2012. Hypopulvins, novel peptaibiotics from the polyporicolous fungus Hypocrea pulvinata, are produced during infection of its natural hosts. Fungal Biology 116, 1219–1231. https://doi.org/10.1016/j.funb....
 
47.
Röhrich, C.R., Jaklitsch, W.M., Voglmayr, H., Iversen, A., Vilcinskas, A., Nielsen, K.F., Thrane, U., Döhren, H.V., Brückner, H., Degenkolb, T. 2014. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. Fungal Diversity 69, 117–146. https://doi.org/10.1007/s13225....
 
48.
Schneller, J.J., 2008. Antheridiogens. In: Ranker, T.A., Haufler, C.H. (eds), Biology and Evolution of Ferns and Lycophytes. Cambridge University Press, Cambridge, pp. 134–158. https://doi.org/10.1017/cbo978....
 
49.
Shukolyukov, A., Lugmair, G.W., 1998. Isotopic evidence for the Cretaceous-Tertiary impactor and its type. Science 282, 927–929. https://doi.org/10.1126/scienc....
 
50.
Silva-Stenico, M.E., Vengadajellum, C.J., Janjua, H.A., Harrison, S.T., Burton, S.G., Cowan, D.A., 2007. Degradation of low rank coal by Trichoderma atroviride ES11. Journal of Indian Microbiology and Biotechnology 34, 625–631. https://doi.org/10.1007/s10295....
 
51.
Sugahara, H., Mimura, K., 2014. Shock-induced pyrolysis of amino acids at ultra-high pressures ranged from 3.2 to 35.3 GPa. Journal of Analytical and Applied Physics 108, 170–175. https://doi.org/10.1016/j.jaap....
 
52.
Suo, J., Chen, S., Zhao, Q., Shi, L., Dai, S., 2015. Fern spore germination in response to environmental factors. Frontiers in Biology 10, 358–376. https://doi.org/10.1007/s11515....
 
53.
Tomati, U., Grappelli, A., Galli, E., 1988. The hormonelike effect of earthworm casts on plant growth. Biology and Fertility of Soils 5, 288–294. https://doi.org/10.1007/bf0026....
 
54.
Toon, O.B., Bardeen, C., Garcia, R., 2016. Designing global climate and atmospheric chemistry simulations for 1 and 10 km diameter asteroid impacts using the properties of ejecta from the K-Pg impact. Atmospheric Chemistry and Physics 16, 13185–13212. https://doi.org/10.5194/acp-16....
 
55.
Trigo-Rodríguez, J.P., 2006. The role of comets and meteorites in the origin of life. In: Seckbeck, J. (ed.), Life as We Know It. Springer, Berlin, pp. 383–397.
 
56.
Trinquier, A., Birck, J.-L., Allègre, C.J., 2006. The nature of the KT impactor. A 54Cr reappraisal. Earth and Planetary Science Letters 241, 780–788. https://doi.org/10.1016/j.epsl....
 
57.
Tschudy, R.H., Pillmore, C.L., Orth, C.J., Gillmore, J.S., Knight, J.D., 1984. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, Western Interior. Science 225, 1030–1032. https://doi.org/10.1126/scienc....
 
58.
Vajda, V., McLoughlin, S., 2004. Fungal proliferation at the Cretaceous-Tertiary boundary. Science, 1489. . https://doi.org/10.1126/scienc....
 
59.
Vajda, V., McLoughlin, S., 2007. Extinction and recovery patterns of vegetation across the Cretaceous- Palaeogene boundary – a tool for unraveling the causes of the end-Permian mass-extinction. Review of Palaeobotany and Palynology 144, 99–112. https://doi.org/10.1016/j.revp....
 
60.
Vajda, V., Ocampo, A., Ferrow, E., Bender Koch, C. 2015. Nanoparticles as the primary cause for longterm sunlight suppression at high southern latitudes following the Chicxulub impact. Gondwana Research 27, 1079–1088. https://doi.org/10.1016/j.gr.2....
 
61.
Weber, A.L., 1998. Prebiotic polymer synthesis and the origin of glycolytic metabolism. Final Technical Report, NASA Cooperative Agreement NCC 2-784, SETI Institute, Mountain View, 1–102.
 
62.
Whittet, D.C.B., 1997. Is extraterrestrial organic matter relevant to the origin of life on Earth? Origins of Life and Evolution of the Biosphere 27, 249–262. https://doi.org/10.1007/978-94....
 
63.
Zahnle, K., Grinspoon, D., 1990. Comet dust as a source of amino acids at the Cretaceous/Tertiary boundary. Nature 348, 157–160. https://doi.org/10.1038/348157....
 
64.
Zhao, M., Bada, J.L., 1989. Extraterrestrial amino acids in the Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark. Nature 339, 463–465. https://doi.org/10.1038/339463....
 
 
CITATIONS (1):
1.
The First Plants to Recolonize Western North America Following the Cretaceous-Paleogene Mass Extinction Event
Keith Berry
International Journal of Plant Sciences
 
eISSN:2082-0259
ISSN:0001-6594