Early Eudicot flower and fruit: Dakotanthus gen. nov. from the Cretaceous Dakota Formation of Kansas and Nebraska, USA
 
More details
Hide details
1
Florida Museum of Natural History, University of Florida, 1659 Museum Road, Dickinson Hall, Gainesville, Florida, 32611-7800, USA
 
2
Department of Earth and Atmospheric Sciences, Indiana University, 1001 East 10th Street, Bloomington, Indiana 47405-1405, USA
 
3
Department of Biology, University of Florida, 213 Carr Hall, Newell Dr., Gainesville, Florida, 32611-8525, USA
 
4
Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
 
 
Online publication date: 2018-06-19
 
 
Publication date: 2018-06-19
 
 
Acta Palaeobotanica 2018; 58(1): 27-40
 
ABSTRACT
An extinct plant that populated the eastern margin of the Cretaceous Midcontinental Seaway of North America about 100 million years ago has attracted interest as one of the earliest known bisexual flowers in the fossil record. Reexamination of the type specimen of Carpites cordiformis Lesq., and corresponding specimens from sandstones and clays of the Dakota Formation of Kansas and Nebraska and the correlative Woodbine Sandstone of Texas, with both light microscopy and micro CT scanning, leads to a revised concept of the morphology and affinities of the “Rose Creek flower”. The moderately large flowers (22–30 mm diameter) have two perianth whorls: five basally fused sepals and five free spatulate petals. The gynoecium is pentacarpellate with five styles. A crescent-shaped nectariferous pad occurs at the base of the gynoecium aligned with each sepal. Ten stamens are inserted at the level of the nectaries, one whorl organized opposite the sepals and another opposite the petals. In situ pollen is oblate, brevitricolporate and finely verrucate. The fruits are loculicidal capsules with persistent calyx and disk. Comparing the full suite of observed characters with those of extant angiosperms indicates particularly close similarity to the monogeneric fabalean family Quillajaceae, with shared features of perianth number and morphology, nectary position and morphology, stamen number and morphology, and gynoecium merosity, although the fossil differs from extant Quillaja in fruit type (capsule vs basally syncarpous follicles) and especially in pollen morphology (10 μm oblate, microverrucate, vs 30–40 μm prolate, striate).
 
REFERENCES (37)
1.
ANDREWS H.N, JR. 1970. Index of generic names of fossil plants, 1820–1965. U.S. Geol. Surv. Bull., 1300: 1–354.
 
2.
Barclay R.S., Rioux M., Meyer L.B., Bowring S.A., Johnson K.R. & Miller I.M. 2015. High precision U–Pb zircon geochronology for Cenomanian Dakota Formation floras In Utah. Cret. Res., 52: 213–237.
 
3.
Basinger J.F. & Dilcher D.L. 1984. Ancient bisexual flowers. Science, 224(4648): 511–513.
 
4.
Bello M.A., Hawkins J.A., Rudall P.J., Bello M.A., Hawkins J.A. & Rudall P.J. 2008. Floral morphology and development in Quillajaceae and Surianaceae (Fabales), the species-poor relatives of Leguminosae and Polygalaceae. Ann. Bot., 101: 483–483.
 
5.
BRENNER R.L., LUDVIGSON G.A., WITZKE B.J., ZAWISTOSKI A.N., KVALE E.P., RAVN R.L. & JOECKEL R.M. 2000. Late Albian Kiowa–Skull Creek marine transgression, lower Dakota Formation, eastern margin of Western Interior Seaway, USA. J. Sed. Res., 70: 868–878.
 
6.
Claxton F., Banks H., Klitgaard B.B. & Crane P.R. 2005. Pollen morphology of families Quillajaceae and Surianaceae (Fabales). Rev. Palaeobot. Palynol., 133: 221–233.
 
7.
CRANE P.R. & DILCHER D.L. 1984. Lesqueria: an early angiosperm fruiting axis from the mid-Cretaceous. Ann. Missouri Bot. Gard., 71: 384–402.
 
8.
Crane P.R., Manchester S.R. & Dilcher D.L. 1991. Reproductive and vegetative structure of Nordenskioldia (Trochodendraceae), a vesselless dicotyledon from the Early Tertiary of the Northern Hemisphere. Am. J. Bot., 78: 1311–1334.
 
9.
CREPET W.L., NIXON K.C. & GANDOLFO M.A. 2004. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am. J. Bot., 91: 1666–1682.
 
10.
Díaz-Forestier J., Gómez M. & Montenegro G. 2009. Nectar volume and floral entomofauna as a tool for the implementation of sustainable apicultural management plans in Quillaja saponaria Mol. Agroforestry Systems, 76: 149–162.
 
11.
DILCHER D.L. 1979. Early angiosperm reproduction: an introductory report. Rev. Palaeobot. Palynol., 27: 291–328.
 
12.
DILCHER D.L. & CRANE P.R. 1984a. In pursuit of the first flower. Nat. Hist. Mag., 93: 56–61.
 
13.
DILCHER D.L. & CRANE P.R. 1984b. Archaeanthus: An early angiosperm from the Cenomanian of the Western Interior of North America. Ann. Missouri Bot. Gard., 71: 351–383.
 
14.
FRIIS E.M., CRANE P.R. & PEDERSEN K.R. 2011. Early flowers and angiosperm evolution. Cambridge University Press, Cambridge, New York.
 
15.
FRIIS E.M., CRANE P.R. & PEDERSEN K.R. 2016. The emergence of core eudicots: new floral evidence from the earliest Late Cretaceous. Proc. R. Soc. B, 283: 20161325.
 
16.
GRÖCKE D.R., LUDVIGSON G.A., WITZKE B.L., ROBINSON S.A., JOECKEL R.M., UFNAR D.F. & RAVN R.S. 2006. Recognizing the Albian-Cenomanian (OAE1d) sequence boundary using plant carbon isotopes: Dakota Formation, Western Interior Basin, USA. Geology, 34: 193–196.
 
17.
HEER O. 1869. Miocene baltische Flora. Beiträge zur Naturkunde Preussens, Volume 2. Koch, Königsberg.
 
18.
HEER O. 1870. Die Miocene Flora und Fauna Spitzbergens. Kungliga Svenska Vetenskapsakademien Handlingar 8(7): 1–98 (Reprinted as Flora Fossilis Arctica 2[3], 1871).
 
19.
LESQUEREUX L. 1874. Contributions to the fossil flora of the Western Territories, Part I. The Cretaceous flora. Rep. (Annual) U.S. Geol. Geogr. Surv. Territ., 6: 1–136.
 
20.
LESQUEREUX L. 1892. The flora of the Dakota Group: a posthumous work. Monogr. U.S. Geol. Surv., 17: 1–287.
 
21.
LUDVIGSON G.A., WITZKE B.J., JOECKEL R.M., RAVN R.L., PHILLIPS P.L., GONZÁLEZ L.A., & BRENNER R.L. 2010. New insights on the sequence stratigraphic architecture of the Dakota Formation in Kansas-Nebraska-Iowa from a decade of sponsored research activity. Current Research in Earth Sciences: Kansas Geol. Surv. Bull. 258, part 2, 35 pp.
 
22.
MACNEAL D.L. 1958. The flora of the Upper Cretaceous Woodbine sand in Denton County, Texas. Monogr. Acad. Nat. Sci., 10: 1–152.
 
23.
MCNEILL J., Chairman Editor. 2012. International code of nomenclature for algae, fungi, and plants (Melbourne Code). Regnum Vegetabile, 154: 1–208. Koeltz Scientific Books, Königstein, Germany.
 
24.
MANCHESTER S.R. & O’LEARY E.L. 2010. Phylogenetic distribution and identification of fin-winged fruits. Bot. Rev., 76: 1–82.
 
25.
RETALLACK G. & DILCHER D.L. 1981a. Coastal hypothesis for the dispersal and rise to dominance of flowering plants: 27–77. In: K.J. Niklas (ed.), Paleobotany, Paleoecology, and Evolution, vol. 2, Praeger Publishers, New York.
 
26.
RETALLACK G. & DILCHER D.L. 1981b. Early angio­sperm reproduction: Prisca reynoldsii, gen. et sp. nov. from mid-Cretaceous coastal deposits in Kansas, USA. Palaeontographica, B, 179: 103–137.
 
27.
RETALLACK G. & DILCHER D.L. 1986. Cretaceous angiosperm invasion of North America. Cret. Res., 7: 227–252.
 
28.
RETALLACK G. & DILCHER D.L. 2012. Outcrop versus core and geophysical log interpretation of mid-Cretaceous paleosols from the Dakota Formation of Kansas. Palaeogeogr., Palaeoclim., Palaeoecol. 329–330: 47–63.
 
29.
RICHARDSON J.E., FAY M.F., CRONK Q.C., BOWMAN D. & CHASE M.W. 2000. A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. Am. J. Bot., 87: 1309–1324.
 
30.
RICHARDSON J.E., CHATROU L.W., MOLS J.B., ERKENS R.H.J. & PIRIE M.D. 2004. Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philos. Trans. R. Soc. Lond. B, 359: 1495–1508.
 
31.
RONSE De CRAENE L.P. 2010. Floral Diagrams: an Aid to Understanding Flower Morphology and Evolution. Cambridge University Press, Cambridge, New York.
 
32.
SCHÖNENBERGER J. & von BALTHAZAR M. 2006. Reproductive structures and phylogenetic framework of the rosids – progress and prospects. Plant Syst. Evol., 260: 87–106.
 
33.
SLATTERY J.S., COBBAN W.A., MCKINNEY K.C., HARRIES P.J. & SANDNESS A.L. 2015. Early Cretaceous to Paleocene paleogeography of the Western Interior Seaway: the interaction of eustasy and tectonism. Wyoming Geological Association Guidebook, 2015: 22–60.
 
34.
SOLTIS D., SOLTIS P., ENDRESS P., CHASE M., MANCHESTER S., JUDD W., MAJURE L. & MAVRODIEV E. 2018. Phylogeny and Evolution of the Angiosperms, revised and updated edition. University of Chicago Press, Chicago.
 
35.
Upchurch G.R. & Dilcher D.L. 1990. Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek locality, Jefferson County, southeastern Nebraska. U.S. Geol. Surv. Bull., 1915: 1–55.
 
36.
Wang H., Dilcher D.L., Schwarzwalder R.N. & Kvaček J. 2011. Vegetative and reproductive morphology of an extinct Early Cretaceous member of Platanaceae from the Braun’s Ranch locality, Kansas, USA. Int. J. Plant Sci., 172: 139–157.
 
37.
Whitehead D.R. 1983. Wind pollination: some ecological and evolutionary perspectives: 97–108. In: L. Real (ed.), Pollination Biology, Academic Press.
 
 
CITATIONS (20):
1.
Nature through Time
Jiří Kvaček, Clement Coiffard, Maria Gandolfo, Alexei Herman, Julien Legrand, Mário Mendes, Harufumi Nishida, Sun Ge, Hongshan Wang
 
2.
Cretaceous asterid evolution: fruits ofEydeia jerseyensissp. nov. (Cornales) from the upper Turonian of eastern North America
Brian Atkinson, Camila Martínez, William Crepet
Annals of Botany
 
3.
The Fossil Record of Long-Proboscid Nectarivorous Insects
A. Khramov, A. Bashkuev, E. Lukashevich
Entomological Review
 
4.
Phylogenetic analysis of fossil flowers using an angiosperm‐wide data set: proof‐of‐concept and challenges ahead
Jürg Schönenberger, Maria Balthazar, Martínez López, Béatrice Albert, Charlotte Prieu, Susana Magallón, Hervé Sauquet
American Journal of Botany
 
5.
Florivory of Early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination
Lifang Xiao, Conrad Labandeira, David Dilcher, Dong Ren
Proceedings of the Royal Society B: Biological Sciences
 
6.
How deep is the conflict between molecular and fossil evidence on the age of angiosperms?
Mario Coiro, James Doyle, Jason Hilton
New Phytologist
 
7.
The Core Eudicot Boom Registered in Myanmar Amber
Zhong-Jian Liu, Diying Huang, Chenyang Cai, Xin Wang
Scientific Reports
 
8.
Fossil pollen from early Palaeogene sediments in western India provides phylogenetic insights into divergence history and pollen character evolution in the pantropical family Ebenaceae
Mahi Bansal, Shivaprakash Nagaraju, Ashish Mishra, Jeyakumar Selvaraj, Rajeev Patnaik, Vandana Prasad
Botanical Journal of the Linnean Society
 
9.
Early Cretaceous mealybug herbivory on a laurel highlights the deep‐time history of angiosperm–scale insect associations
Lifang Xiao, Conrad Labandeira, Yair Ben‐Dov, S. Maccracken, Chungkun Shih, David Dilcher, Dong Ren
New Phytologist
 
10.
Microsporangiophores from the Early Cretaceous (Berriasian) of Bornholm, Denmark, with comments on a pre-angiosperm xerophytic flora
Else Friis, Peter Crane, Kaj Pedersen
Review of Palaeobotany and Palynology
 
11.
Integrating Fossil Flowers into the Angiosperm Phylogeny using a Total Evidence Approach
Andrea López-Martínez, Jürg Schönenberger, Balthazar von, César González-Martínez, Santiago Ramírez-Barahona, Hervé Sauquet, Susana Magallón
 
12.
Mechanical Forces in Floral Development
Kester Bull–Hereñu, Santos dos, João Toni, Ottra El, Pakkapol Thaowetsuwan, Julius Jeiter, De Ronse, Akitoshi Iwamoto
Plants
 
13.
Arthropod and fungal herbivory at the dawn of angiosperm diversification: The Rose Creek plant assemblage of Nebraska, U.S.A.
Lifang Xiao, Conrad Labandeira, David Dilcher, Dong Ren
Cretaceous Research
 
14.
Ferruginous biofilm preservation of Ediacaran fossils
G.J. Retallack
Gondwana Research
 
15.
An unusual plane tree from the Early Cretaceous of Kansas, USA
Indah Huegele, Hongshan Wang
Review of Palaeobotany and Palynology
 
16.
Integrating Fossil Flowers into the Angiosperm Phylogeny Using Molecular and Morphological Evidence
Andrea López-Martínez, Jürg Schönenberger, Balthazar von, César González-Martínez, Santiago Ramírez-Barahona, Hervé Sauquet, Susana Magallón, April Wright
Systematic Biology
 
17.
Patterns of variation in fleshy diaspore size and abundance from Late Triassic–Oligocene
Duhita Naware, Roger Benson
Biological Reviews
 
18.
The Cretaceous diversification of angiosperms: perspectives from mesofossils
Else Marie Friis, Peter R. Crane, Kaj Raunsgaard Pedersen
Geological Society, London, Special Publications
 
19.
Cretaceous and Paleocene fossils reveal an extinct higher clade within Cornales, the dogwood order
Austin T. Nguyen, Brian A. Atkinson
American Journal of Botany
 
20.
Cenomanian terrestrial paleoenvironments from the Bohemian Cretaceous Basin in Central Europe and their implications for angiosperm paleoecology
Jiří Kvaček, Marcela Svobodová, Jana Čepičková, Veronika Veselá, Lenka Špičáková, David Uličný, Vasilis Teodoridis, Jiřina Dašková, Mário Miguel Mendes, Petra Zahajská
Palaeogeography, Palaeoclimatology, Palaeoecology
 
eISSN:2082-0259
ISSN:0001-6594
Journals System - logo
Scroll to top