ORIGINAL ARTICLE
Angiosperm affinities of Surangea from the late Cretaceous Deccan Intertrappean Beds of central India
 
More details
Hide details
1
Gondia Education Society High School and Junior College, Mohadi. Dist., Gondia, 4416014-M.S., India
 
2
Department of Earth & Environmental Sciences and Museum of Paleontology, University of Michigan, Ann Arbor, MI, 48019, USA
 
3
Department of Botany, J. M. Patel College, Bhandara-441904, India
 
4
Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611-7800, USA
 
 
Online publication date: 2022-12-30
 
 
Publication date: 2022-12-30
 
 
Acta Palaeobotanica 2022; 62(2): 196-204
 
HIGHLIGHTS
  • Permineralized reproductive structures previously interpreted as fern megaspores are reinterpreted as angiosperm fruits.
  • The fruits are pentalocular septicidal capsules with seeds in axile placentation.
  • The seeds are ornamented with transverse ribs rather than spines, and are prominently arillate.
  • Although assignable to the angiosperm clade Pentapetalae, extant familial affinity remains elusive.
KEYWORDS
ABSTRACT
The genus Surangea Chitaley et Sheikh, based on permineralized specimens from the Deccan Intertrappean Beds of central India, was originally considered to represent a fern megasporangium. Reexamination of original material and new specimens has revealed that the structures are capsular fruits with well-defined seeds, rather than megasporangia. We describe Surangea fruits in detail, based on peels and micro-CT scanning, and document its distribution among multiple localities of the Deccan Intertrappean Beds. The fruits are pentacarpellate septicidal capsules with ~8–12 seeds per locule. The seeds are prominently ornamented with parallel ridges and have a curved embryo/endosperm cavity and a prominent aril. This set of features indicates eudicotyledonous affinities for Surangea. In particular, the combination of septicidal capsules, axile placentation and arillate campylotropus seeds suggests affinity with the order Myrtales, but it does not fit cleanly within an extant family. Surangea fruits add to the diversity of angiosperms known from this late Maastrichtian flora. It joins several other fruit types known from the Deccan flora that do not fall neatly into extant families, possibly representing parts of an endemic community that succumbed to environmental stress associated K-Pg boundary events and/or subsequent northward rafting of the Indian subcontinent.
 
REFERENCES (30)
1.
Chitaley, S.D., Patil, G.V., 1973. Sahniocarpon harrisii gen. et sp. nov. from the Deccan Intertrappean beds of India. The Palaeobotanist 20, 288–292.
 
2.
Chitaley, S.D., Sheikh, M.T., 1971 (issued 1972). Surangea mohgaonse, a petrified fructification from the Deccan Intertrappean Beds of India. Geophytology 1, 123–126.
 
3.
Corner, E.J.H., 1976. The seeds of dicotyledons. 2 vols. Cambridge, Cambridge University Press.
 
4.
Ding, L., Maksatbek, S., Cai, F.L., Wang, H.Q., Song, P.P., Ji, W.Q., Xu, Q., Zhang, L.Y., Muhammad, Q., Upendra, B., 2017. Processes of initial collision and suturing between India and Asia. Science China Earth Sciences 60, 635–651. https://doi.org/10.1007/s11430....
 
5.
Graham, S.A., 2007. Lythraceae. In: Kubitzki, K., Bayer, C., Stevens, P.F. (eds), The families and genera of vascular plants, Flowering Plants-Eudicots. Springer, Berlin, Heidelberg, pp. 226–246.
 
6.
Graham, S.A., Graham, A., 2014. Ovary, fruit, and seed morphology of the Lythraceae. International Journal of Plant Sciences 175(2), 202–240. https://doi.org/10.1086/674316.
 
7.
Hartmann, H.E.K., 1993. Aizoaceae. In: Kubitzki, K., Rohwer, J.G., Bittrich, V. (eds), The families and genera of vascular plants. Vol. II. Flowering plants – dicotyledons: Magnolid, Hamamelid and Caryophyliid families. Springer–Verlag, Berlin, pp. 37–39.
 
8.
Hu, X., Garzanti, E., Wang, J., Huang, W., An, W., Webb, A., 2016. The timing of India-Asia collision onset – Facts, theories, controversies. Earth-Science Reviews 160, 264–299. https://doi.org/10.1016/j.ears....
 
9.
Jain, R.K., 1964. Indocarpa intertrappea gen. et sp. nov. A new dicotyledonous fruit from the Deccan Intertrappean series of India. Botanical Gazette 125, 26–33.
 
10.
Kanwal, D., Abid, R., Qaiser, M., 2009. The seed atlas of Pakistan-I. Aizoaceae. Pakistan Journal of Botany 41(4), 1557–1564.
 
11.
Kapgate, D.K., 2005. Megafloral analysis of intertrappean sediments with focus on diversity and abundance of flora of Mohgaonkalan, Mandla and adjoining areas of Madhya Pradesh. Gondwana Geological Magazine 20(1), 31–46.
 
12.
Kapgate, D.K., 2013. Spinocarpon mohgaoense gen. et sp. nov., a permineralized spiny fruit from the Deccan In-tertrappean beds of Mohgaonkalan, Madhya Pradesh, India. Geophytology 43(1), 51–56.
 
13.
Kapgate, D., Awasthi, N., Manchester, S.R., Chitaley, S.D., 2011. Inflorescences and flowers of Sahnipushpam Shukla from the Deccan Intertrappean beds of India. Acta Palaeobotanica 51(2), 207–227.
 
14.
Klaus, S., Morley, R.J., Plath, M., Zhang, Y.-P., Li, J.-T., 2016. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nature Communications 7, 12132. https://doi.org/10.1038/ncomms....
 
15.
Kokate, P.S., Upadhye, E.V., Patil, G.V., 2010. A dicotyledonous drupaceous fossil fruit Scaevolacarpon indicum gen. et. sp. nov. from Mohgaonkalan, M.P., India. Bioinfolet 7(1), 59–63.
 
16.
Landrum, L.R., Sharp, W.P., 1989. Seed coat characters of some American Myrtinae (Myrtaceae): Psidium and related genera. Systematic Botany 14, 370–376.
 
17.
Manchester, S.R., Kapgate, D.K., Wen, J., 2013. Oldest fruits of the grape family (Vitaceae) from the Late Creta-ceous Deccan Cherts of India. American Jounral of Botany 100, 1849–1859. https://doi.org/10.3732/ajb.13....
 
18.
Manchester, S.R., Kapgate, D.K., Ramteke, D.D., Patil, S.P., Smith, S.Y., 2019. Morphology and anatomy of the angiosperm fruit Baccatocarpon, incertae sedis, from the Maastrichtian Deccan Intertrappean Beds of India. Acta Palaeobotanica 59, 241–250. https://doi.org/10.2478/acpa-2....
 
19.
Manchester, S.R., Kapgate, D.K., Ukey, R.W., Wanjari, M.H., 2022. Infructescences, fruits and seeds of the dis-tinctive fossil palm, Tricoccites trigonum K.P. Rode from Mohgaonkalan in Chhindwara District, Madhya Pra-desh, India: three-dimensional morphology, and anatomy. Geophytology 50, 49–60.
 
20.
Matsunaga, K.K.S., Manchester, S.R., Srivastava, R., Kapgate, D.K., Smith, S.Y., 2019. Fossil palm fruits from India indicate a Late Cretaceous origin of tribe Borasseae (Arecaceae). Botanical Journal of the Linnean Society 190, 260–280.
 
21.
Morley, R.J., 2018. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. Journal of Tropical Ecology 34(4), 209–234. https://doi.org/10.1017/S02664....
 
22.
Ocampo, G., Almeda, F., 2013. Seed diversity in the Miconieae (Melastomataceae): morphological characterization and phenetic relationships. Phytotaxa 80(1), 1–129. https://doi.org/10.11646/phyto....
 
23.
Ocampo, G., Michelangeli, F. A., Penneys, D. S., Handley, V., González-Moreno, R., Herrera-Dimas, E., Almeda, F., 2022. A New perspective on seed morphological features in Melastomataceae. In: Goldenberg, R., Michelangeli, F.A., Almeda, F. (eds), Systematics, Evolution, and Ecology of Melastomataceae. Springer, Cham, pp. 491–531. https://doi.org/10.1007/978-3-....
 
24.
Smith, S.Y., Manchester, S.R., Samant, B., Mohabey, D.M., Wheeler, E.A., Baas, P., Kapgate, D., Srivastava, R., Sheldon, N.D., 2015. Integrating Paleobotanical, paleosol, and stratigraphic data to study critical transitions: a case study from the Late Cretaceous-Paleocene of India. In: Earth-Life Transitions: Paleobiology in the Context of Earth System Evolution. Paleontological Society Papers 21, 137–166.
 
25.
Smith, S.Y., Kapgate, D.K., Robinson, S., Srivastava, R., Benedict, J.C., Manchester, S.R., 2021. Fossil fruits and seeds of Zingiberales from the Late Cretaceous-early Cenozoic Deccan Intertrappean beds of India. International Journal of Plant Sciences 182, 91–108. https://doi.org/10.1086/711474.
 
26.
Sprain, C.J., Renne, P.R., Vanderkluysen, L., Pan­de, K., Self, S., Mittal, T., 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363(6429), 866–870. https://doi.org/10.1126/scienc....
 
27.
Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T.W., McNeill, J., Monro, A.M., Prado, J., Price, M.J., Smith, G.F., 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nine-teenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten.
 
28.
Vyshenskaya, G.D., 1996. Melastomataceae. In: Takhtajahn, A., Danilova, M. (eds), Anatomia Seminum Comparativa vol 5, pp. 206–221.
 
29.
Whiffin, T., Tomb, A.S., 1972. The systematic significance of seed morphology in the neotropical capsular-fruited Melastomataceae. American Journal of Botany 59(4), 411–422.
 
30.
Wilson, P.G., 2011. Myrtaceae. In: Kubitski, K. (eds.), The Families and Genera of Vascular Plants Vol. 10, Flowering Plants-Eudicots, Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, pp. 212–271.
 
eISSN:2082-0259
ISSN:0001-6594
Journals System - logo
Scroll to top