Palissya – absolutely incomprehensible or surprisingly interpretable: a new morphological model, affiliations and phylogenetic insights.
More details
Hide details
1
Department of Natural Resources, Mines & Energy, Hood Street, Charleville, Queensland 4470, Australia
2
Queensland Museum, 122 Gerler Road, Hendra, Queensland 4011, Australia
3
School of Engineering and Technology, Central Queensland University, Rockhampton, Queensland 4700, Australia
Online publication date: 2019-12-16
Publication date: 2019-12-16
Acta Palaeobotanica 2019; 59(2): 181-214
KEYWORDS
ABSTRACT
The morphology of the adaxial structures of cones belonging to Palissya Endlicher 1847 emend. nov. are reinterpreted based on exquisitely preserved permineralised material from the Lower Cretaceous of Queensland. Although the material was not found in situ, it likely derives from the Orallo Formation, which is Valanginian in age. The cones have dual vascular bundles in each bract/scale complex, and the different tissue types in the bract and ovule/scale complex support interpretation of the cone as a compound structure.
Since the early twentieth century it has been widely accepted that each ovule is surrounded by a cup-shaped structure, but the detailed morphology of the “cup” has hitherto been unclear. These new three-dimensionally preserved specimens with in situ ovules are described as Palissya tillackiorum sp. nov. This study demonstrates that the “cup” is formed from a pair of thin scales that subtend but are not fused to each ovule; each pair of scales comprises a thicker outer and thinner inner scale. The organographic relationships among ovules and scales in Palissya show a high degree of synorganisation. The adaxial surface of the bract/scale complex has 2–6 pairs of erect (orthotropous) ovules. The ovule/scale units are arranged symmetrically in two parallel rows on either side of the midline of the bract/scale. Individual ovule/scale units are comparable to those seen in extant Podocarpaceae and Taxaceae. The ovules are thin-walled and are interpreted to have a single integument and a non-thickened (non-lignified) micropyle. These new insights allow reinterpretation of material previously referred to Palissya. A new species is described from Yorkshire, England, as P. harrisii C.R. Hill ex Pattemore & Rozefelds sp. nov. All species based on well preserved cones are reconsidered herein: P. sphenolepis (Braun 1843) Nathorst 1908 emend. Florin 1958, P. elegans Parris, Drinnan & Cantrill 1995 emend. nov., P. bartrumii Edwards 1934 emend. nov., P. antarctica Cantrill 2000 and P. hunanensis Wang 2012.
Palissya ovalis Parris et al. 1995 differs structurally from Palissya and is transferred to Knezourocarpon Pattemore 2000 emend. nov. Representatives of this genus may superficially resemble those of Palissya in compressions and impressions, and their congeneric status has been previously suggested; hence its inclusion in this study. Knezourocarpon has adaxial processes that are positioned in two parallel rows but it lacks ovules and paired lateral scales that formed a cup-shape, and its processes attach directly to a central vascular trace. The improved understanding of Palissya’s morphology allows for definite separation of these genera, although the higher-order affiliation of Knezourocarpon remains unclear.
REFERENCES (100)
1.
ANDERSON J.M., ANDERSON H.M. & CLEAL C.J. 2007. Brief history of the gymnosperms: classification, biodiversity, phytogeography and ecology. Strelitzia, 20: i–x + 1–280.
2.
ARBER E.A.N. 1917. The earlier Mesozoic floras of New Zealand. Bull. N.Z. Geol. Surv., Palaeontol., 6: 2–78.
3.
ARNDT S. 2002. Morphologie und Systematik ausgewählter mesozoischer Koniferen. Palaeontographica, B, 262(1–4): 1–23.
4.
BALME B.E. 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Rev. Palaeobot. Palynol., 87: 81–323.
5.
BARTRUM J.A. 1921. Note on the Port Waikato Mesozoic flora. N.Z.J. Sci. Technol., 4: 258.
6.
BELL A.D. 1991. Plant form: an illustrated guide to flowering plant morphology. Oxford University Press, New York.
7.
BRAUN C.F.W. 1843. 1. Beiträge zur Urgeschichte der Pflanzen: 1–46, pls 1–14. In: Münster G.G. (ed.), Beiträge zur Petrefacten-Kunde mit zehn doppelten und vier einfachen, nach der Natur gezeichneten Tafeln. Bayreuth, Buchner’schen Buchhandlung, 6.
8.
CANTRILL D.J. 2000. A Cretaceous (Aptian) flora from President Head, Snow Island, Antarctica. Palaeontographica, B, 253(4–6): 153–191.
9.
CHRISTENHUSZ M.J.M., REVEAL J., FARJON A., GARDNER M.F., MILL R.R. & CHASE M.W. 2011. A new classification and linear sequence of extant gymnosperms. Phytotaxa, 19: 55–70.
10.
CLIFFORD H.T. 1995. A permineralised cupulate fructification from Queensland. Mem. Qd Mus., 38(2): 419–427.
11.
CLIFFORD H.T. & CARNEY L.G. 1994. A non-destructive technique for determining the shapes in situ of permineralised seeds. Mem. Qd Mus., 35(1): 23–25.
12.
COOK A.G., BYRAN S.E. & DRAPER J.J. 2013. Post-orogenic Mesozoic basins and magmatism: 515–575. In: Jell P.A. (ed.), Geology of Queensland. Geological Survey of Queensland.
13.
CRANFIELD L.C. 2017. Mapping of Surat Basin coal seam gas reservoir units. Queensland Minerals and Energy Review Series.
14.
DAY R.W. 1964. Stratigraphy of the Roma-Wallumbilla area. Publ. Geol. Surv. Qd, 318: 1–24.
15.
DELEVORYAS T. & HOPE R.C. 1981. More evidence for conifer diversity in the Upper Triassic of North Carolina. Amer. J. Bot., 68: 1003–1007.
16.
DELEVORYAS T. & HOPE R.C. 1987. Further observations on the Late Triassic conifers Compsostrobus neotericus and Voltzia andrewsii. Rev. Palaeobot. Palynol., 51: 59–64.
17.
DNRME 2018. Detailed surface geology – Queensland. Dept of Natural Resources, Mines & Energy, Queensland. Digital spatial data:
http://qldspatial.information.... [accessed September 2018].
18.
DÖRKEN V.M., ZHANG Z., MUNDRY I.B. & STÜTZEL T. 2011. Morphology and anatomy of male cones of Pseudotaxus chienii (W.C. Cheng) W.C. Cheng (Taxaceae). Flora, 206: 444–450.
19.
DÖRKEN V.M., NIMSCH H. & RUDALL P.J. 2018. Origin of the Taxaceae aril: evolutionary implications of seed-cone teratologies in Pseudotaxus chienii. Ann. Bot., 20: 1–11.
20.
DOWELD A.B. 2001. Prosyllabus Tracheophytorum: tentamen systematis plantarum vascularium (Tracheophyta). Geos, Moscow.
21.
DOYLE J.A. 2008. Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. Int. J. Pl. Sci., 169: 816–843.
22.
DOYLE J.A. 2012. Molecular and fossil evidence on the origin of angiosperms. Annu. Rev. Earth Planet. Sci., 40: 301–326.
23.
DRINNAN A.N. & CHAMBERS T.C. 1986. Early Cretaceous plants, Koonwarra: 1–77. In: Jell P.A. & Roberts J. (eds), Plants and invertebrates from the Lower Cretaceous Koonwarra Fossil Bed, South Gippsland, Victoria. Mem. Assoc. Austral. Palaeontol., 3.
24.
EDWARDS W.N. 1934. Jurassic plants from New Zealand. Ann. Mag. Nat. Hist., (10)13(73): 81–109.
25.
ENDLICHER S. 1847. Synopsis coniferarum. Sangalli, apud Scheitlin & Zollikofer.
26.
EXON N.F. 1976. Geology of the Surat Basin in Queensland. Bureau of Mineral Resources, Geology and Geophysics, Bulletin, 166: 1–160.
27.
EXON N.F. 1980. The stratigraphy of the Surat Basin, with special reference to coal deposits. Coal Geol. 1: 57–69.
28.
FARJON A. 2010. A handbook of the world’s conifers. Vols 1, 2. Brill, Leiden.
29.
FLORIN R. 1944. Die Koniferen des Oberkarbons und des unteren Perms. Palaeontographica, B, 85(7): 459–654.
30.
FLORIN R. 1951. Evolution of the Cordaites and conifers. Acta Horti Berg., 15: 285–338.
31.
FLORIN R. 1954. The female reproductive organs of conifers and taxads. Biol. Rev., 29: 367–388.
32.
FLORIN R. 1958. On Jurassic taxads and conifers from north-western Europe and eastern Greenland. Acta Horti Berg., 17(10): 257–402.
33.
FREDERIKSEN N.O. 1980. Significance of monosulcate pollen abundance in Mesozoic sediments. Lethaia, 13: 1–20.
34.
FRIIS E.M., CRANE P.R., PEDERSEN K.R., BENGTSON S., DONOGHUE P.C.J., GRIMM G.W. & STAMPANONI M. 2007. Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. Nature, 450(7169): 549–552.
35.
GANDOLFO M.A., NIXON K.C. & CREPET W.L. 2001. Turonian Pinaceae of the Raritan Formation, New Jersey. Pl. Syst. Evol., 226: 187–203.
36.
GOULD R.E. 1973. A new species of Osmundacaulis from the Jurassic of Queensland. Proc. Linn. Soc. N.S.W., 98: 86–94.
37.
GRAUVOGEL-STAMM L. & GALTIER J. 1998. Homologies among coniferophyte cones: further observations. Comptes Rendus de l’Académie des Sciences, ser. IIA – Earth and Planetary Science, 326: 513–520.
38.
HARRIS T.M. 1935. The fossil flora of Scoresby Sound East Greenland. Part 4. Ginkgolaes, Coniferales, Lycopodiales and isolated fructifications. Meddel. Grønland, 112(1): 1–176.
39.
HILL C.R. & van KONIJNENBURG-van CITTERT J.H.A. 1973. Species of plant fossils collected from the Middle Jurassic plant bed at Hasty Bank, Yorkshire. Naturalist, 925: 59–63.
40.
HILL C.R. 1974 (unpubl.). Palaeobotanical and sedimentological studies in the lower Bajocian (Middle Jurassic) flora of Yorkshire. PhD thesis, University of Leeds, England, 281 pp.
41.
HIRMER M. 1936. Die Blüten der Coniferen. Teil 1: Entwicklungsgeschichte und vergleichende Morphologie des weibliche Blütehzapfens der Coniferen. Bibliotheca Botanica, 28(114): 1–100.
42.
JANSSON I.-M., McLOUGHLIN S., VAJDA V. & POLE M. 2008. An Early Jurassic flora from the Clarence-Moreton Basin, Australia. Rev. Palaeobot. Palynol., 150: 5–21.
43.
LANG X.-D., SU J.-R., LU S.-G. & ZHANG Z.-J. 2013. A taxonomic revision of the genus Cephalotaxus (Taxaceae). Phytotaxa, 84: 1–24.
44.
LESLIE A.B. & BOYCE C.K. 2012. Ovule function and the evolution of angiosperm reproductive innovations. Int. J. Plant Sci., 173: 640–648.
45.
LESLIE A.B., BEAULIEU J.M. & MATHEWS S. 2017. Variation in seed size is structured by dispersal syndrome and cone morphology in conifers and other nonflowering seed plants. New Phytol., 216(2): 429–437.
46.
LOVISETTO A., GUZZO F., TADIELLO A., TOFFALI K., FAVRETTO A. & CASADORO G. 2012. Molecular analyses of MADS-Box genes trace back to gymnosperms the invention of fleshy fruits. Molecular Biology and Evolution, 29: 409–419.
47.
MACK A.L. 2000. Did fleshy fruit pulp evolve as a defence against seed loss rather than as a dispersal mechanism? J. Biosci., 25: 93–97.
48.
McKELLAR J.L. 2013. Fig. 7.2. Detailed correlation chart across main Queensland basins of the Great Australian Superbasin and comparison of their stratigraphic columns to the international standard and to Australian zonal schemes: 518–519. In: Jell P.A. (ed.), Geology of Queensland. Geological Survey of Queensland, Brisbane.
49.
McLOUGHLIN S. & DRINNAN A.N. 1995. A Middle Jurassic flora from the Walloon Coal Measures, Mutdapilly, Queensland, Australia. Mem. Qd Mus., 38(1): 257–272.
50.
McLOUGHLIN S. & POTT C. 2019. Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants. Palaeogeogr., Palaeoclimat., Palaeoecol., 515: 47–69.
51.
McLOUGHLIN S., TOSOLINI A.-M.P., NAGALINGUM N.S. & DRINNAN A.N. 2002. Early Cretaceous (Neocomian) flora and fauna of the Lower Strzelecki Group, Gippsland Basin, Victoria. Mem. Assoc. Austral. Palaeontol., 26: 1–144.
52.
MEYEN S.V. 1984. Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record. Bot. Rev., 50(1): 1–111.
53.
MILLER C.N. 1999. Implications of fossil conifers for phylogenetic relationships of living conifer. Bot. Rev., 65(3): 239–277.
54.
NATHORST A.G. 1886. Om floran i Skånes kolförande bildningar. I Floran vid Bjuf (1878–1886). Sveriges Geologiska Undersökning, Ser. C, 85: 83–131.
55.
NATHORST A.G. 1908. Paläobotanische mitteilungen 7. Über Palissya, Stachyotaxus und Palaeotaxus. Kungl. Svenska VetenskapsAkad. Handl., 43(8): 1–20.
56.
PARRIS K.M., DRINNAN A.N. & CANTRILL D.J. 1995. Palissya cones from the Mesozoic of Australia and New Zealand. Alcheringa, 19: 87–111.
57.
PATTEMORE G.A. 2000. A new Early Jurassic pteridosperm fructification from Queensland. J. Afr. Earth Sc., 31: 187–193.
58.
PATTEMORE G.A. 2016a. Megaflora of the Australian Triassic–Jurassic: a taxonomic revision. Acta Palaeobot., 56: 121–182.
59.
PATTEMORE G.A. 2016b (unpubl.). Mesozoic gymnosperms: megafloral changes through the Triassic–Jurassic of Eastern Gondwana. PhD thesis, School of Earth Sciences, The University of Queensland, xvi + 292 pp. DOI: 10.13140/RG.2.2.14556.49282.
60.
PATTEMORE G.A., RIGBY J.F. & PLAYFORD G. 2014. Palissya: a global review and reassessment of Eastern Gondwanan material. Rev. Palaeobot. Palynol., 210: 50–61.
61.
PATTEMORE G.A., RIGBY J.F. & PLAYFORD G. 2015. Triassic–Jurassic pteridosperms of Australasia: speciation, diversity and decline. Boletín Geológico y Minero, 126: 689–722.
62.
POLE M.S. 2004. Early-Middle Jurassic stratigraphy of the Fortrose-Chaslands region, southernmost South Island, New Zealand. N.Z.J. Geol. Geophys., 47: 129–139.
63.
POROPAT S.F., MARTIN S.K., TOSOLINI A.-M.P., WAGSTAFF B.E., BEAN L.B., KEAR B.P., VICKERS-RICH P. & RICH T.H. 2018. Early Cretaceous polar biotas of Victoria, southeastern Australia –an overview of research to date. Alcheringa, 42: 157–229.
64.
POTT C. & McLOUGHLIN S. 2011. The Rhaetian flora of Rögla, northern Scania, Sweden. Palaeontology, 54: 1025–1051.
65.
PRICE R.A. 1996. Systematics of the Gnetales: a review of morphological and molecular evidence. Int. J. Pl. Sci., 157(6): S40–S49.
66.
RYDIN C., PEDERSEN K.R., CRANE P.R. & FRIIS E.M. 2006. Former diversity of Ephedra (Gnetales): evidence from Early Cretaceous seeds from Portugal and North America. Ann. Bot., 98: 123–140.
67.
RYDIN C., KHODABANDEH A. & ENDRESS P.K. 2010. The female reproductive unit of Ephedra (Gnetales): comparative morphology and evolutionary perspectives. Bot. J. Linn. Soc., 163: 387–430.
68.
SAHNI B. 1920. Petrified plant remains from the Queensland Mesozoic and Tertiary formations. Qd Geol. Surv. Publ., 267: 1–49.
69.
SAPORTA G. 1884. Coniféres ou Aciculariées. Paléontologie Française, ou description des fossiles de la France, (2)3: 1–672.
70.
SCHENK A. 1867. Die fossile Flora der Grenzschichten des Keupers und Lias Frankens. C.W. Kreidel, Wiesbaden.
71.
SCHENK A. 1884. Über die Gattungen Elatides Heer, Palissya Endlicher, Strobilites Schimper. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 5: 341–345.
72.
SCHENK A. 1890. Handbuch der Botanik. E. Trewendt, Breslau.
73.
SCHWEITZER H.-J. & KIRCHNER M. 1996. Die Rhäto–Jurassischen Floren des Iran und Afghanistans. 9. Coniferophyta. Palaeontographica, B, 238(4–6): 77–139.
74.
SEWARD A.C. 1919. Fossil Plants. Vol. 4. Ginkgoales, Coniferales, Gnetales. Cambridge University Press, London.
75.
SHIRLEY J. 1902. Notes on plants from Duaringa, Ipswich, Dawson River, and Stanwell and on fossil woods from the Ipswich Beds, Boggo Road, Brisbane. Qd Geol. Surv. Publ., 171 [Bull. 18]: 1–16.
76.
SILVEIRA S.R., DORNELAS M.C. & MARTINELLI A.P. 2016. Perspectives for a framework to understand aril initiation and development. Frontiers in Plant Science, 7(1919): 1–7.
77.
SLATER S.M. & WELLMAN C.H. 2015. A quantitative comparison of dispersed spore/pollen and plant megafossil assemblages from a Middle Jurassic plant bed from Yorkshire, UK. Paleobiology, 41: 640–660.
78.
Solms-Laubach H.G. 1891. Fossil botany, being an introduction to palaeophytology from the standpoint of the botanist. Clarendon Press, Oxford.
79.
SPENCER A.R.T., MAPES G., BATEMAN R.M., HILTON J. & ROTHWELL G.W. 2015. Middle Jurassic evidence for the origin of Cupressaceae: a paleobotanical context for the roles of regulatory genetics and development in the evolution of conifer seed cones. Amer. J. Bot., 102: 942–961.
80.
STEWART W.N. & ROTHWELL G.W. 1993. Paleobotany and the evolution of plants. Cambridge University Press, London.
81.
STÜTZEL T. & RÖWEKAMP I. 1999. Female reproductive structures in Taxales. Flora, 194: 145–157.
82.
SWARBRICK C.F.J. 1973. Stratigraphy and economic potential of the Injune Creek Group in the Surat Basin. Rep. Qd Geol. Surv., 79: 1–40.
83.
TAYLOR E.L., TAYLOR T.N. & KRINGS M. 2009. Paleobotany: the biology and evolution of fossil plants, 2nd edition. Elsevier.
84.
TAYLOR G. & EGGLETON R.A. 2017. Silcrete: an Australian perspective. Aust. J. Earth Sci., 64: 987–1016.
85.
TEKLEVA M.V. & ROGHI G. 2018. Lagenella martini from the Triassic of Austria – Exine structure and relationships with other striate palynomorphs. Rev. Palaeobot. Palynol., 258: 13–21.
86.
TIDWELL W.D., BRITT B.B. & WRIGHT W.W. 2013. Donponoxylon gen. nov., a new spermatophyte axis from the Middle to Late Jurassic of Australia and New Zealand. Rev. Palaeobot. Palynol., 196: 36–50.
87.
TIDWELL W.D. & CLIFFORD H.T. 1995. Three new species of Millerocaulis (Osmundaceae) from Queensland, Australia. Austral. Syst. Bot., 8: 667–685.
88.
TIDWELL W.D. & ROZEFELDS A.C. 1990. Grammatocaulis donponii gen. et sp. nov., a permineralized fern from the Jurassic of Queensland. Australia. Rev. Palaeobot. Palynol., 66: 147–158.
89.
TIDWELL W.D. & ROZEFELDS A.C. 1991. Yulebacaulis normanii gen. et sp. nov., a new fossil tree fern from south-eastern Queensland, Australia. Austral. Syst. Bot., 4: 421–432.
90.
TOMLINSON P.B. & TAKASO T. 1989. Cone and ovule ontogeny in Phyllocladus (Podocarpaceae). Bot. J. Linn. Soc., 99: 209–221.
91.
TOMLINSON P.B. & TAKASO T. 2002. Seed cone structure in conifers in relation to development and pollination: a biological approach. Canad. J. Bot., 80: 1250–1273.
92.
TRAVERSE A. 2007. Paleopalynology. Springer, The Netherlands.
93.
ULLYOTT J.S. & NASH D.J. 2016. Distinguishing pedogenic and non-pedogenic silcretes in the landscape and geological record. Proc. Geologists’ Assoc., 127: 311–319.
94.
van KONIJNENBURG-van CITTERT J.H.A. 2008. Palissya from the Jurassic flora of Yorkshire, with in situ pollen. Abstract volume of the 12th International Palynological Congress & 8th International Organisation of Paleobotany Conference, Aug. 30–Sept. 5, 2008, Bonn, Germany. Terra Nostra, 2008(2): 292–293.
95.
VAEZ-JAVADI F. 2011. Middle Jurassic flora from the Dansirit Formation of the Shemshak Group, Alborz, north Iran. Alcheringa, 35: 77–102.
96.
WANG Z.Q. 2012. A bizarre Palissya ovulate organ from Upper Triassic strata of the Zixing coal field, Hunan Province, China. Chinese Sci. Bull., 57: 1169–1177.
97.
WHITE M.E. 1967a (unpubl.). Report on 1966 collections of plant fossils from the Surat Basin, south west Eromanga Basin, Delamere, Northern Territory, and Proserpine district of Queensland. Bureau of Mineral Resources, Geology and Geophysics, Record 1967/78: 17pp.
98.
WHITE M.E. 1967b (unpubl.). Report on 1967 collection of plant fossils from the Surat Basin, Queensland. Bureau of Mineral Resources, Geology and Geophysics, Record 1967/162: 18pp.
99.
WHITE M.E. 1969 (unpubl.). Report on the 1968 collection of plant fossils from Surat and Clarence-Moreton Basins, Queensland. Bureau of Mineral Resources, Geology and Geophysics, Record 1969/57: 16pp.
100.
WHITE M.E. 1986. Greening of Gondwana: The 400 million year story of Australia’s plants. Reed Australia, Frenchs Forest, Sydney.
CITATIONS (3):
1.
The Rhaetian flora of Wüstenwelsberg, Bavaria, Germany: Description of selected gymnosperms (Ginkgoales, Cycadales, Coniferales) together with an ecological assessment of the locally prevailing vegetation
Konijnenburg-van Van, Christian Pott, Stefan Schmeißner, Günter Dütsch, Evelyn Kustatscher
Review of Palaeobotany and Palynology
2.
The Eco-Plant model and its implication on Mesozoic dispersed sporomorphs for Bryophytes, Pteridophytes, and Gymnosperms
Jianguang Zhang, Olaf Lenz, Pujun Wang, Jens Hornung
Review of Palaeobotany and Palynology
3.
Cretaceous pollen cone with three‐dimensional preservation sheds light on the morphological evolution of cycads in deep time
Andres Elgorriaga, Brian Atkinson
New Phytologist