Charred conifer remains from the Late Oligocene – Early Miocene of Northern Hesse (Germany)
More details
Hide details
Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main
Programa de Pós-Graduação em Ambiente e Desenvolvimento, Universidade do Vale do Taquari – UNIVATES (PPGAD/UNIVATES), Lajeado, Rio Grande do Sul, Brazil
Online publication date: 2018-12-24
Publication date: 2018-12-24
Acta Palaeobotanica 2018; 58(2): 175–184
Fire is an important constituent of many modern and fossil ecosystems. During the last decades a large number of studies have dealt with fires in pre-Cenozoic ecosystems. Evidence for the occurrence of Palaeogene and Neogene wildfires (e.g. in the form of pyrogenic inertinites in lignite deposits) is geographically and stratigraphically widespread. However, as compared to earlier periods (i.e. the Permian and Cretaceous), fewer studies have focussed so far on plants burnt (or charred) in wildfires from these periods, even though these periods are of considerable interest for our understanding of the evolution of modern ecosystems. Here we report the occurrence of charred wood remains belonging to different conifer taxa from the base seam of the former Frielendorf opencast lignite mine in Northern Hesse (Germany). These findings are evidence that these conifers, and the types of vegetation they were growing in, were affected by wildfires occurring during the Late Oligocene – Early Miocene in this region.
Abarzúa A.M., Vargas C., Jarpa L., Gutiérrez N.M., Hinojosa L.F. & Paula S. 2016. Evidence of Neogene wildfires in Central Chile: Charcoal records from the Navidad formation. Palaeogeogr., Palaeoclimatol., Palaeoecol., 459: 76–85.
Abu Hamad A.M.B., Jasper A. & Uhl D. 2012. The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? Int. J. Coal Geol., 96–97: 60–71.
Bergbaulicher Verein Kassel (Ed.) 1928. Der Kasseler Braunkohlenbergbau (Festschrift zum 350jährigen Bestehen), Kassel 1928.
Bestland E.A. 1987. Volcanic stratigraphy of the Oligocene Colestin Formation in the Siskiyou Pass area of southern Oregon. Oregon Geol., 49(7): 79–86.
Bode H. 1928. Neue Beobachtungen zur Entstehung des Fusits. Mitt. Abt. Gesteins-, Erz, Kohle. u. Salzunters., Preuss. Geol. Landesanst. Berlin, 3: 12–22.
Bond W.J. 2015. Fires in the Cenozoic: a late flowering of flammable ecosystems. Front. Plant Sci., 5: 749.
Bond W.J. & Scott A.C. 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytol., 188: 1137–1150.
Brown S.A.E., Scott A.C., Glasspool I.J. & Collinson M.E. 2012. Cretaceous wildfires and their impact on the Earth system. Cretaceous Research, 36: 162–190.
Cutter B.E., Cumbie B.G. & McGinnes E.A. 1980. SEM and shrinkage analyses of Southern Pine wood following pyrolysis. Wood Sci. Tech., 14: 115–130.
Davis O.K. & Ellis B. 2010. Early occurrence of sagebrush steppe, Miocene (12 Ma) on the Snake River Plain. Rev. Palaeobot. Palynol., 160: 172–180.
Diessel C.F.K. 2010. The stratigraphic distribution of inertinite. Int. J. Coal Geol., 81: 251–268.
Dolezych M. & van der Burgh J. 2004. Xylotomische Untersuchungen an inkohlten Hölzern aus dem Braunkohlentagebau Berzdorf (Oberlausitz/ Deutschland). Feddes Repert., 115: 397–437.
Figueiral I., Mosbrugger V., Rowe N.P., Utescher T., Jones T.P. & von der Hocht F. 2002. Role of Charcoal Analysis for Interpreting Vegetation Change and Paleoclimate in the Miocene Rhine Embayment (Germany). Palaios, 17: 347–365.
Gee C.T. 2005. The genesis of mass carpological deposits (bedload carpodeposits) in the Tertiary of the Lower Rhine Basin, Germany. Palaios, 20: 463–478.
Gerards T., Damblon F., Wauthoz B. & Gerrienne P. 2007. Comparison of cross-field pitting in fresh, dried and charcoalified softwoods. Iawa J., 28: 49–60.
Glasspool I.J., Edwards D. & Axe L. 2004. Charcoal in the Silurian as evidence for the earliest wildfire. Geology, 32: 381–383.
Glasspool I.J. & Scott A.C. 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci., 3: 627–630.
Glasspool I.J., Scott A.C., Waltham D., Pronina N. & Shao L. 2015. The impact of fire on the Late Paleozoic Earth system. Front. Plant Sci., 6: 756.
Goswami P.K. & Deopa T. 2018. Lithofacies characters and depositional processes of a Middle Miocene. Lower Siwalikfluvial system of the Himalayan foreland basin, India. J. Asian Earth Sci., 162: 41–53.
Grebe H. 1953. Beziehungen zwischen Fusitlagen und Pollenführung in der Rheinischen Braunkohle. Pal. Z., 27: 12–15.
Grund H. 1928. Beiträge zum Studium fossiler Holzkohlenbildungen besonders in Braunkohlenlagerstätten. Jahrb. Preuss. Geol. Landesanst., 49: 1–32.
Gürdal G. & Bozcu M. 2011. Petrographic characteristics and depositional environment of Miocene Çan coals, Çanakkale-Turkmey. Int. J. Coal Geol., 85: 143–160.
Heinz I. 2004. Systematische Erfassung und Dokumentation der mikroanatomischen Merkmale der Nadelhölzer aus der Klasse der Pinatae. Unpublished PhD Thesis Technical University München, 209 p.;
Herring J.R. 1985. Charcoal fluxes into sediments of the North Pacific Ocean: the Cenozoic record of burning. In: The carbon cycle and atmospheric CO2: natural variations Archean to Present. Geophys. Monogr., 32: 419–442.
Hoetzel S., Dupont L., Schefuss E., Rommerskirchen F. & Wefer G. 2013. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nat. Geosci., 6: 1027–1030.
Holdgate G.R., Wallace M.W., O’Connor M., Korasidis V. & Lieven U. 2016. The origin of lithotype cycles from Oligo–Miocene brown coals from Australia and Germany. Int. J. Coal Geol., 166: 47–61.
Holdgate G.R., Wallace M.W., Sluiter I.R.K., Marcuccio D., Fromhold T.A., Wagstaff B.E. 2014. Was the Oligocene-Miocene a time of fire and rain? Insights from brown coals of the southeastern Australian Gippsland Basin. Palaeogeogr., Palaeoclim., Palaeoecol., 41: 65–78.
Holdgate G.R., Cartwright I., Blackburn D.T., Wallace M.W., Gallagher S.J., Wagstaff B.E., Chung L.i. 2007. The Middle Miocene Yallourn coal seam – the last coal in Australia. Int. J. Coal Geol., 70. 95–115.
IAWA Committee. 2004. IAWA list of microscopic features for softwood identification. IAWA Journal, 25: 1–70.
Kirchheimer F. 1937. Grundzüge einer Pflanzenkunde der deutschen Braunkohle. 153 pp., Halle/Saale (Knapp).
Korasidis V.A., Wallace M.W., Wagstaff B.E., Holdgate G.R., Tosolini A.-M.P. & Jansen B. 2016. Cyclicfloral succession and fire in a Cenozoic wetland/peatland system. Palaeogeogr., Palaeoclimatol., Palaeoecol., 461: 237–252.
Korasidis V.A., Wallace M.W., Wagstaff B.E. & Holdgate G.R. 2017. Oligo-Miocene peatland ecosystems of the Gippsland Basin and modern analogues. Glob. Planet. Change, 149: 91–104.
Kowalski R. 2017. Miocene carpological floras of the Konin region (Central Poland). Acta Palaeobot., 57: 39–100.
Kowalski R. & Fagúndez J. 2017. Maiella miocaenica gen. et sp. nov., a New Heather Genus (Ericeae, Ericaceae) from the Central European Miocene. Int. J. Plant Sci., 178: 411–420.
Krüger P., Paudayal K., Wuttke M. & Uhl D. 2017. Ein Beitrag zur oberoligozänen Makroflora von Norken (Westerwald, Rheinland-Pfalz, W-Deutschland). Mainzer Naturw. Archiv, 54: 65–81.
Larson P.R. 1994. The vascular cambium: development and structure. Springer-Verlag, New York.
Li S., Hughes A.C., Su T., Anberée J.L., Oskolski A.A., Sun M., Ferguson D.K. & Zhou Z. 2017. Fire dynamics under monsoonal climate in Yunnan, SW China: past, present and future. Palaeogeogr., Palaeoclim., Palaeoecol., 465: 168–176.
Mai D.H. 1989. Fossile Funde von Castanopsis (D. Don) Spach (Fagaceae) und ihre Bedeutung für die europäischen Lorbeerwalder. Flora, 182: 269–286.
Martin H.A. 1996. Wildfires in past ages. Proc. Linn. Soc. N.S.W., 116: 3–18.
Masselter T. & Hofmann C.-C. 2005. Palynology and palynofacies of Miocene coal-bearing (clastic) sediments of the Hausruck area (Austria). Geobios, 38: 127–138.
Menzel P. 1920. Über hessische fossile Pflanzenreste. Jahrb. Preuss. Geol. Landesanst., 41: 340–391.
Mildenhall D.C. 1989. Summary of the age and paleoecology of the Miocene Manuherikia Group, Central Otago, New Zealand. J.R. Soc. New Zeal., 19: 19–29.
Mildenhall D.C., Kennedy E.M., Lee D.E., Kaulfuss U., Bannister J.M., Fox B. & Conran J.G. 2014. Palynology of the early Miocene Foulden Maar, Otago, New Zealand: Diversity following destruction. Rev. Palaeobot. Palynol., 204: 27–42.
Osterkamp I.C., de Lara D.M., Gonçalves T.A.P., Kauffmann M., Périco E., Stülp S., Uhl D. & Jasper A. 2018. Changes of wood anatomical characters of selected species of Araucaria during artificial charring – implications for palaeontology. Acta Bot. Bras., 32: 198–211.
Peñalver E. & Gaudant J. 2010. Limnic food web and salinity of the Upper Miocene Bicorb palaeolake (eastern Spain). Palaeogeogr., Palaeoclim., Palaeoecol., 297: 683–696.
Phillips E.W.J. 1948. Identification of softwoods by their microscopic structure. Forest Prod. Res. Bull., 22: 1–56.
Pole M. 2003. New Zealand climate in the Neogene and implications for global atmospheric circulation. Palaeogeogr., Palaeoclim., Palaeoecol., 193: 269–284.
Potonié R. 1929. Spuren von Wald- und Moorbränden in Vergangenheit und Gegenwart. Jahrb. Preuss. Geol. Landesanst., 49: 1184–1203.
Retallack G.J. 2004. Late Miocene climate and life on land in Oregon within a context of Neogene global change. Palaeogeogr., Palaeoclim., Palaeoecol., 214: 97–123.
Ritzkowski S., Grimm M.C. & Hottenrott M. 2011. Niederhessische Tertiärsenke. In: Deutsche Stratigraphische Kommission (Eds), Stratigraphie von Deutschland IX. Tertiär, Teil 1. – Schriftenr. Deut. Ges. Geowiss., 75: 303–343.
Roberts D.L., Scisio L., Herries A.I.R., Scott L., Bamford M.K., Musekiwa C. & Tsikos H. 2013. Miocenefluvial systems and palynofloras at the southwestern tip of Africa: Implications for regional and globalfluctuations in climate and ecosystems. Earth Sci. Rev., 124: 184–201.
Robson B., Collinson M., Riegel W., Wilde V., Scott A. & Pancost R. 2015. Early Paleogene wildfires in peat-forming environments at Schöningen, Germany. Palaeogeogr., Palaeoclim., Palaeoecol., 437: 53–62.
Schindler E., Uhl D. & Amler M.R.W. 2014. GeoArchive Marburg moved to Senckenberg Research Institute and Natural History Museum Frankfurt. Boll. Soc. Paleont. Ital., 53: 135–136.
Schöning M. & Bandel K. 2004. A diverse assemblage of fossil hardwood from the Upper Tertiary (Miocene?) of the Arauco Peninsula, Chile. J. South Am. Earth Sci., 17: 59–71.
Schuckmann W. 1925. Zur Entstehung fossiler Holzkohle. Senckenbergiana, 7: 195–196.
Sciscio L., Tsikos H., Roberts D.L., Scott L., van breugel Y., Sinninghe Damste J.S., Schouten S. & Grocke D.R. 2016. Miocene climate and vegetation changes in the Cape Peninsula, South Africa: Evidence from biogeochemistry and palynology. Palaeogeogr., Palaeoclim., Palaeoecol., 445: 124–137.
Scott A.C. 2000. The pre-Quaternary history of fire. Palaeogeogr., Palaeoclim., Palaeoecol., 164: 297–345.
Scott A.C. 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr., Palaeoclim., Palaeoecol., 291: 11–39.
Scott A.C., Bowman D.M.J.S., Bond W.J., Pyne S.J. & Alexander M.E. 2014. Fire on Earth: and introduction. Wiley Blackwell, 413 pp.
Sluiter I.R.K., Blackburn D.T. & Holdgate G.R. 2016. Fire and Late Oligocene to Mid-Miocene peat mega-swamps of south-eastern Australia: a floristic and palaeoclimatic interpretation. Austr. J. Bot., 64: 609–625.
Smyth H.R., Crowley Q.G., Hall R., Kinny P.D., Hamilton P.J. & Schmidt D.N. 2011. A Toba-scale eruption in the Early Miocene: The Semilir eruption, East Java, Indonesia. Lithos, 126: 198–211.
Sohn Y.K., Ki J.S., Jung S., Kim M.-C., Cho H. & Son M. 2013. Synvolcanic and syntectonic sedimentation of the mixed volcaniclastic–epiclastic succession in the Miocene Janggi Basin, SE Korea. Sed. Geol., 288: 40–59.
Steckhan W. 1952. Der Braunkohlenbergbau in Nordhessen. Hess. Lagerstättenarchiv, 1: 212 pp. Hess. Landesanstalt für Bodenforschung, ­Wiesbaden.
Uhl D., Dolezych M. & Böhme M. 2014. Taxodioxylon-like charcoal from the Late Miocene of Western Bulgaria. Acta Palaeobot., 54: 101–111.
Uhl D., Schindler T. & Wuttke M. 2011. Paläoökologische Untersuchungen im Oberoligozän von Norken (Westerwald, Rheinland-Pfalz, W-Deutschland) – Erste Ergebnisse. Mainzer naturwiss. Archiv, 48: 115–127.
Van der Burgh J. 1973. Hölzer der niederrheinischen Braunkohlenformation. 2. Hölzer der Braunkohlengruben „Maria Theresia“ zu Herzogenrath, „Zukunft West“ zu Eschweiler und „Victor“ (Zülpich Mitte) zu Zülpich. Nebst einer systematisch-anatomischen Bearbeitung der Gattung Pinus L. Rev. Palaeobot. Palynol., 15: 73–275.
Visscher G.E. & Jagels R. 2003. Separation of Metasequoia and Glyptostrobus (Cupressaceae) based on wood anatomy. IAWA J., 24: 439–450.
Wedmann S., Uhl D., Lehmann T., Garrouste R., Nel A., Gomez B., Smith K.T.K. & Schaal S.F.K. 2018. The Konservat-Lagerstätte Menat (Paleocene; France) – an overview and new insights. Geol. Acta, 16: 189–213.
Williams C.J., Mendell E.K., Murphy J., Court W.M., Johnson A.H. & Richter S.L. 2008. Paleoenvironmental reconstruction of a Middle Miocene forest from the western Canadian Arctic. Palaeogeogr., Palaeoclim., Palaeoecol., 261: 160–176.
Winkelmolen A.M. 1972. Shape sorting in Lower Oligocene, Northern Belgium, Sed. Geol., 7: 183–227.